
www.manaraa.com

Rowan University Rowan University

Rowan Digital Works Rowan Digital Works

Theses and Dissertations

5-24-2018

An investigation of the cortical learning algorithm An investigation of the cortical learning algorithm

Anthony C. Samaritano
Rowan University

Follow this and additional works at: https://rdw.rowan.edu/etd

 Part of the Electrical and Computer Engineering Commons, and the Neuroscience and Neurobiology

Commons

Recommended Citation Recommended Citation
Samaritano, Anthony C., "An investigation of the cortical learning algorithm" (2018). Theses and
Dissertations. 2572.
https://rdw.rowan.edu/etd/2572

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please
contact graduateresearch@rowan.edu.

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F2572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=rdw.rowan.edu%2Fetd%2F2572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/55?utm_source=rdw.rowan.edu%2Fetd%2F2572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/55?utm_source=rdw.rowan.edu%2Fetd%2F2572&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/etd/2572?utm_source=rdw.rowan.edu%2Fetd%2F2572&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:graduateresearch@rowan.edu

www.manaraa.com

AN INVESTIGATION OF THE CORTICAL LEARNING ALGORITHM

by

Anthony C. Samaritano

A Thesis

Submitted to the

Department of Electrical and Computer Engineering

College of Engineering

In partial fulfillment of the requirement

For the degree of

Master of Science in Electrical and Computer Engineering

at

Rowan University

November 2, 2016

Thesis Advisor: Robi Polikar, Ph.D.

www.manaraa.com

© 2018 Anthony C. Samaritano

www.manaraa.com

iii

Acknowledgments

I would like to express my sincerest gratitude and appreciation to Dr. Robi Polikar

for his help, instruction, and patience throughout the development of this thesis and my

research into cortical learning algorithms. Dr. Polikar took a risk by allowing me to follow

my passion for neurobiologically inspired algorithms and explore this emerging category

of cortical learning algorithms in the machine learning field. The skills and knowledge I

acquired throughout my research have definitively molded me into a more diligent and

thorough engineer. I have, and will continue to, take these characteristics and skills I have

gained into my current and future professional endeavors.

I would like to thank my mother, Dawn Samaritano, and fiancé, Lauren Anderson,

for the continued and unwavering love and support through this journey. Without your

support, I would not have been about to finish this research. Thank you for propelling me

forward at every turn and the countless hours of reading and feedback throughout the

writing of the thesis.

www.manaraa.com

iv

Abstract

Anthony C. Samaritano

AN INVESTIGATION OF THE CORTICAL LEARNING ALGORITHM

2017-2018

Robi Polikar, Ph.D.

Master of Science in Electrical and Computer Engineering

Pattern recognition and machine learning fields have revolutionized countless

industries and applications from biometric security to modern industrial assembly lines.

The fields continue to accelerate as faster, more efficient processing hardware becomes

commercially available. Despite the accelerated growth of the pattern recognition and

machine learning fields, computers still are unable to learn, reason, and perform

rudimentary tasks that humans and animals find routine. Animals are able to move fluidly,

understand their environment, and maximize their chances of survival through adaptation

– animals demonstrate intelligence. A primary argument in this thesis that we have not yet

achieved a level of intelligence similar to humans and animals in the pattern recognition

and machine learning fields, not due to a lack of computational power but, rather, due to

lack of understanding of how the cortical structures of mammalian brain interact and

operate.

This thesis describes a cortical learning algorithm (CLA) that models how the

cortical structures in the mammalian neocortex operate. Furthermore, a high level

understanding of how the cortical structures in the mammalian brain interact, store

semantic patterns, and auto-recall these patterns for future predictions are discussed.

Finally, we demonstrate that the algorithm can build and maintain a model of its

environment and provide feedback for actions and/or classification in a similar fashion to

our understanding of cortical operation.

www.manaraa.com

v

Table of Contents

Abstract .. iv

List of Figures .. ix

List of Tables... xiii

 Introduction .. 1

Why Study the Brain? .. 2

Related Work ... 4

Motivation ... 5

Contributions ... 6

Broader Impacts... 7

Thesis Structure ... 7

 Understanding the Brain ... 9

Cortical Structures ... 9

Neuron ... 9

Neocortex .. 13

Neocortical Structure ... 14

Neocortical Regions ... 18

Thalamus ... 19

Hippocampus ... 22

 Machine Learning... 25

Supervised Learning .. 25

Reinforcement Learning .. 27

Unsupervised Learning .. 28

www.manaraa.com

vi

Table of Contents (continued)

Applicable Machine Learning Algorithms ... 29

Shallow Architectures .. 30

Deep Architectures ... 35

 Relationship between the Brain and Machine Learning 40

Properties of the Brain ... 40

Online Learning ... 41

Hierarchy ... 42

Time Sequences ... 45

Sparsity .. 47

Attention .. 49

Invariant Representation .. 52

Signal Agnostics and Plasticity. ... 54

Pattern Recognition Properties of an Intelligent System ... 56

Resistance to Catastrophic Forgetting ... 56

Data Fusion .. 57

Noise Resistance .. 58

Anomaly Detection .. 60

Non-Stationary Environments .. 61

New Class .. 62

 Cortical Learning Algorithm ... 64

Neocortical Principles .. 65

Online Learning and Time Sequences .. 65

www.manaraa.com

vii

Table of Contents (continued)

Cell Regions and Hierarchy.. 65

Sparsity .. 66

Prediction and Invariant Representations .. 67

Cortical Learning Algorithm Design .. 68

Modularity ... 68

Visualization .. 70

CLA Structure .. 70

Name Cell Method CLA Graphical Example.. 76

CLA Graphical Example .. 84

Applications .. 90

Unsupervised Pattern Recognition .. 90

Motor Control .. 92

Cortical Learning Algorithms .. 93

UML Diagram ... 93

Unsupervised Learning Name Cell CLA .. 95

Supervised Learning Name Cell CLA .. 100

Model CLA .. 105

Hierarchical Classification ... 110

Experiments ... 118

Synthetic Test Signals .. 119

CLA Testing .. 122

CLA Functionality ... 123

www.manaraa.com

viii

Table of Contents (continued)

Hierarchical Structuring Functionality .. 123

Sparsity .. 124

Convergence .. 125

Real Data ... 125

 Results.. 128

Functionality.. 128

Single Pattern ... 128

Spatial Pattern .. 129

Multiple Patterns .. 130

Noisy Signal .. 131

Name Cells .. 132

Classification ... 133

Hierarchy ... 133

Sparsity .. 136

Noise ... 138

CLA Flight State Identification .. 139

NuPIC Flight State Identification ... 139

 Discussion .. 141

Contributions and Future Work .. 150

Conclusion... 151

References ... 153

www.manaraa.com

ix

List of Figures

Figures Page

Figure 1. Unipolar Neuron [13].. 9

Figure 2. Neurotransmitters and Receptor Site ... 10

Figure 3. Ion channel carrying action potential over time ... 11

Figure 4. Example of a single action potential .. 12

Figure 5. Example of a neuron pulse train .. 13

Figure 6. Neocortex Location [16] ... 14

Figure 7. Cortical Column [18] .. 16

Figure 8. Thalamus Location [16] .. 20

Figure 9. First order and high order thalamic connections .. 21

Figure 10. Hippocampus Location [16] .. 22

Figure 11. Cortical Region Interaction ... 23

Figure 12. Common classier design [23] .. 25

Figure 13. Common classifier system architecture [23] .. 26

Figure 14. (a) Unipolar neuron (b) Perceptron model ... 30

Figure 15. MLP architecture .. 33

Figure 16. Deep architecture example [5] .. 37

Figure 17. Illustration of the uniformity in neocortical column structure across the

neocortex [32] .. 40

Figure 18. Example hierarchy of cell regions ... 43

Figure 19. (a) Dense representation (ASCII encoding) (b) Sparse representation.......... 48

Figure 20. Corticocortical and corticothalamocortical connections from low level

regions to high level regions ... 50

Figure 21. Example of hierarchy of networked computers.. 69

Figure 22. Cell Region structure and interface ... 75

www.manaraa.com

x

Figure 23. Illustration of the function of both the input and output parser relative to

the CLA. .. 76

Figure 24. Newly initialized cell region ... 77

Figure 25. First time step of temporal signal .. 77

Figure 26. Second time step of temporal signals .. 78

Figure 27. Third time step of temporal signals ... 79

Figure 28. Cell region with Hebbian connections ... 79

Figure 29. First signal of pattern .. 80

Figure 30. Second signal of pattern .. 80

Figure 31. Last signal of pattern ... 81

Figure 32. Cell region with strengthened Hebbian connections 82

Figure 33. First signal of pattern .. 82

Figure 34. Creation of first name cell ... 83

Figure 35. Creation of second name cell .. 84

Figure 36. Initialization of CLA ... 84

Figure 37. First time step of temporal signal .. 85

Figure 38. Second time step of temporal signals .. 86

Figure 39. Third time step of temporal signals ... 86

Figure 40. Cell region with Hebbian connections ... 87

Figure 41. Connection strengthened ... 88

Figure 42. First signal of pattern .. 88

Figure 43. Second signal of pattern .. 89

Figure 44. Last signal of pattern ... 90

Figure 45. UML diagram ... 94

Figure 46. Graphical representation of an unsupervised CLA at t0................................ 98

Figure 47. Graphical representation of an unsupervised CLA at t1................................ 98

www.manaraa.com

xi

Figure 48. Graphical representation of an unsupervised CLA at t2................................ 99

Figure 49. Graphical representation of an unsupervised CLA at t3.............................. 100

Figure 50. Graphical representation of a supervised CLA at t0 103

Figure 51. Graphical representation of a supervised CLA at t1 104

Figure 52. Graphical representation of a supervised CLA at t2 104

Figure 53. Graphical representation of a supervised CLA at t3 105

Figure 54. Graphical representation of alternate CLA at t0 ... 107

Figure 55. Graphical representation of alternate CLA at t1 ... 108

Figure 56. Graphical representation of alternate CLA at t2 ... 108

Figure 57. Graphical representation of alternate CLA at t3 ... 109

Figure 58. Graphical representation of alternate CLA at t4 ... 109

Figure 59. Initialized linear hierarchy of alternate CLAs .. 111

Figure 60. Initialized linear hierarchy of alternate CLAs at t1 113

Figure 61. Initialized linear hierarchy of alternate CLAs at t2 113

Figure 62. Initialized linear hierarchy of alternate CLAs at t3 114

Figure 63. Initialized linear hierarchy of alternate CLAs at t4 114

Figure 64. Initialized linear hierarchy of alternate CLAs at t5 115

Figure 65. Initialized linear hierarchy of alternate CLAs at t6 115

Figure 66. Initialized linear hierarchy of alternate CLAs at t7 116

Figure 67. Initialized linear hierarchy of alternate CLAs at t8 117

Figure 68. Initialized linear hierarchy of alternate CLAs at t9 117

Figure 69. Initialized linear hierarchy of alternate CLAs at t10.................................... 118

Figure 70. CLA validation synthetic dataset example ... 119

Figure 71. Example of CLA hierarchy classification synthetic dataset 120

Figure 72. Illustration of varying signal bias .. 121

www.manaraa.com

xii

Figure 73. (a) Linear hierarchical structure (b) Pyramidal structure. 124

Figure 74. Example flight test data... 126

Figure 75. Feedback to ground station computer .. 127

Figure 76. Quadrotor during automated flight .. 127

Figure 77. Single pattern results ... 128

Figure 78. Partial pattern results .. 129

Figure 79. Multiple patterns results .. 130

Figure 80. Noisy signal results ... 131

Figure 81. Name cell creation results ... 132

Figure 82. Increasing the number of columns ... 133

Figure 83. Increasing the number of hierarchical layers ... 134

Figure 84. Hierarchical structuring dataset (subset) .. 135

Figure 85. Average performance of hierarchical structures ... 136

Figure 86. Varying levels of sparsity.. 136

Figure 87. Sparsity vs performance .. 137

Figure 88. Confusion matrix of flight data classification using CLA 139

Figure 89. Confusion matrix of flight data classification using NuPIC 140

Figure 90. Example of speed vs performance ... 143

Figure 91. Class transition of NuPIC and CLA .. 145

Figure 92. Example of arbitrarily large hierarchy of CLAs... 147

www.manaraa.com

xiii

List of Tables

Table Page

Table 1. Firing Modes and Neural Pathways [12].. 17

Table 2. Neocortical Layer Description ... 19

Table 3. Supergranular Cell Lists .. 71

Table 4. Supergranular Cell Methods .. 71

Table 5. Column Class List and Variables... 72

Table 6. Column Class Methods ... 72

Table 7. Region Lists and Variables .. 73

Table 8. Region Methods .. 74

Table 9. Learning rate per hierarchical layer ... 133

Table 10. Level of sparsity .. 137

Table 11. Hierarchical classification performance with noise 138

www.manaraa.com

1

Introduction

The human brain is one of the most widely studied areas in biology. Many

researchers have devoted their entire careers to studying, demystifying and understanding

how the brain operates. Only recently have researchers been able to noninvasively peer

into the brain to understand the flow of information throughout the cortical structures of

the brain and discover how the different regions of the brain interact. Furthermore, the

brain imaging technology continues to develop at a rapid pace, which in turn has provided

neurobiology researchers with unprecedented opportunities to peer into the brain in vivo.

The accelerating rate at which neurobiology researchers are gathering and

publishing their findings on the cortical structures of the brain opens a very unique

multidisciplinary opportunity for pattern recognition and machine learning researchers.

This opportunity may mark the first time in history that we can start applying our high level

understanding of cortical function to real world algorithms. Given our current

understanding of neurobiology, it is possible to hypothesize that intelligence, in the context

of neurobiology, is a system encoded in the cortical structure of highly evolved animal

species. If this hypothesis is true, it is possible, using high fidelity brain imaging technology

and other in vivo methods, to characterize intelligence by understanding the flow of

information throughout the brain and the cortical structures involved in processing sensory

information. Traditionally, neurobiology and machine learning have been treated as two

separate fields of study, yet the boundary between the two is increasingly becoming fuzzier.

One of the main goals of this thesis is, therefore, to illustrate the unique properties that the

brain demonstrates, and relate those properties to machine learning and pattern recognition.

www.manaraa.com

2

Furthermore, using the knowledge gathered from neurobiology research and correlated to

machine learning and pattern recognition fields, this thesis illustrates how ‘intelligent’

machines of the future can use a new class of machine learning algorithms – that we call

cortical learning algorithms (CLA) – to exhibit true intelligent behavior. In the following

sections, we argue why it is important to study the brain for machine learning research.

This chapter then briefly introduces Jeff Hawkins’ work as the primary motivating factor

for this work. This chapter concludes with the primary contributions and broader impact of

this thesis.

Why Study the Brain?

The machine learning and pattern recognition fields have produced many

algorithms capable of clustering and classifying data, predicting future patterns, etc.

Typically, these machine learning algorithms have tunable parameters that help them

minimize an error criterion (i.e. fitness function). Although these tuned algorithms perform

well at predicting and classifying datasets, they are still subject to a number of fundamental

problems including the overfitting and sample complexity – the number of training samples

required to train the classifier to a desirable level of performance.

The brain, conversely, approaches learning in a different manner than typical

machine learning and pattern recognition algorithms today – the brain learns and adapts to

the environment by using very few training examples and without completely rebuilding

its models. Moreover, because of the neocortex’s (the focus of this thesis) uniform structure

[1], it is possible to theorize the neocortex utilizes the same fundamental cortical operations

(or algorithm) across all learning modalities – e.g. somatosensory, olfaction, vision,

hearing, etc. This uniform structure has led to the following hypothesis upon which this

thesis is based: the neocortex has a common cortical algorithm utilized for both memory

www.manaraa.com

3

and prediction. If this hypothesis is true, this means that the neocortical functions used for

vision, somatosensory perception, audition, language, etc. all follow a single, fundamental

learning algorithm.

At first glance, the biological brain appears to challenge the No Free Lunch theorem

[2], which states that for every problem an algorithm succeeds, there is another problem on

which it will fail. To be clear, the purpose of this thesis is not to challenge the No Free

Lunch theorem by designing a brain, but to explore how the brain is able to efficiently learn

such a large set of problems or modalities by utilizing a common learning algorithm. In

other words, what is the set of assumptions that the neocortical common learning algorithm

makes in order to quickly learn so many modalities while being general enough to support

such a large class of problems? Furthermore, if there is a common learning algorithm

driven by the uniform structure of the neocortex, can we (machine learning and pattern

recognition researchers) emulate its function for use in real world applications? Therefore,

it is necessary to focus on brain function and brain structure for further understanding of

biological intelligence. By studying the brain, machine learning and pattern recognition

researchers can leverage neurobiology researcher’s efforts to attempt to apply

neurobiology research to a new class of biologically inspired algorithms - cortical learning

algorithms (CLA).

The focus of this thesis is to describe cortical interactions within the neocortex. The

neocortex of the mammalian brain appears to be essential to biological intelligence and

will be explored in detail throughout this thesis. Furthermore, brain structures involved

with processing emotion, releasing hormones, etc. are not be discussed in this thesis as they

are, likely, not the source of logical intelligence and are not responsible motor control. To

www.manaraa.com

4

be clear, this thesis is not arguing that structures like the pituitary glands, striatum and other

chemical and hormone producing regions are not essential for the healthy function and

growth of the brain, but may not be essential to intelligence itself. This assumption may

prove to be incorrect but, for the preliminary research conducted for this thesis, it greatly

simplifies and bounds the problem by ignoring the hormone producing brain regions –

instead, this thesis focusing on neocortical structure, and how action potentials and

neurotransmitters are processed between the neocortex and thalamus.

To develop algorithms and methods that model the principles fundamental to

intelligence in the brain, we must first explore neurobiology research to determine the

field’s current model of cortical architectures, and understand the interactions between

various brain regions. This thesis’s purpose is to present the research necessary to

understand basic cortical function as defined by neurobiology research, identify the

properties that cortical circuits inherently demonstrate and relate them to the machine

learning and pattern recognition fields. Furthermore, using the aforementioned cortical

structures, neurobiology research, and properties of cortical circuits, a cortical learning

algorithm (CLA) is presented that demonstrates all the properties of an intelligent machine

as defined in this thesis. Additionally, the CLA is applied to various synthetic and real

datasets to measure its performance, identify the CLAs properties in practice, and draw

conclusions for future work.

Related Work

This thesis relates heavily to Jeff Hawkins work on developing Hierarchical

Temporal Memory, Sparsely Distributed Representations and Cortical Learning Algorithm

framework proposed in On Intelligence [3], implemented at Numenta, Inc. [4]. Further

work and Ph.D thesis research by Dileep George [5] improves upon the memory-prediction

www.manaraa.com

5

framework proposed in On Intelligence and develops mathematical models for the

microcircuits of the brain. Furthermore, recent developments in deep learning and deep

architectures [6] [7] [8] strongly resemble the hierarchical structure of multiple Cortical

Learning Algorithms developed for this research. The related work is discussed in detail

throughout Chapter Chapter 3 of the thesis.

Motivation

Machine learning and pattern recognition have proven extremely important and

influential throughout the fields’ more than half century history and have contributed

immensely to successful careers, organizations, research institutions and industries – i.e.

the fields have continued to accelerate and generate extensive value in our society. The

goal of this thesis is to build upon the success and explore new territories of machine

learning and pattern recognition by analyzing emerging cortical learning algorithms and

techniques influenced by neurobiology research (the study of cells, organization, and

functionality of the nervous system that process information and mediate behavior).

The motivation for exploring the brain for fundamental structures and functionality

of intelligence is galvanized by the desire to further unite machine learning and

neurobiology fields. Further motivation for this thesis is to develop alternate, biologically

inspired cortical learning algorithms that do not utilized traditional mathematical models

of the neural structures - the perceptron and multi-layer perceptron (MLP) models. As

machine learning and pattern recognition researchers, it is prudent to revisit our

understanding of neural networks and update our models using the latest in neurobiology

and cortical structure research. Furthermore, deep belief network researchers have proven

that, by adapting neural networks with known principles of cortical structures, it is possible

www.manaraa.com

6

to greatly improve the state of the art of perception problems (e.g. object recognition)

through unsupervised, hierarchical methods [6] [9].

Contributions

Several researchers have built cortical learning algorithms and started to apply their

algorithms to real world, commercial applications (e.g. Numenta, Inc. and Vicarious) – as

such cortical learning algorithms themselves are not a novel idea and notable cortical

learning algorithms have been developed [5] [10]. Although CLAs are not a novel idea, the

methods, structure, and functionality used to implement the CLA for this thesis are novel.

For example, an alternate CLA model is proposed based on the thalamus research of

Sherman et al. [11] [12] as well as utilizing an arbitrarily large n by m hierarchical structure

of CLAs for classification. Many of the cortical learning algorithms developed in the past

have focused on perception problems (e.g. image recognition) and anomaly detection.

Although image recognition and anomaly detection are both befitting applications for

cortical learning algorithms and hierarchical temporal memory structures, the focus of this

thesis is to develop methods and approaches to utilizing cortical learning algorithms for

motor control applications. Therefore, the contribution of this thesis to the pattern

recognition and machine learning fields are:

1. Implementation of an open .NET C# CLA library for use future applications.

2. Development of a fast, simple cortical learning algorithm based on the initial

research of Jeff Hawkins et al. (described in [3] [4] [5]) without the use of spatial

and temporal pooling, and without the use of name cells.

3. Quantify the effects of hierarchical structuring of CLAs on classification tasks.

4. Quantify the effects of CLA sparsity on classification tasks.

www.manaraa.com

7

5. Novel approach to passing information up the CLA hierarchy derived from

neurobiology research [11].

6. Theory of how cortical learning algorithms may be applied to motor control

applications.

Broader Impacts

In writing and developing this thesis, I hope to impact the scientific community in

the following ways:

• Create a well-structured thesis to understand the fundamentals of cortical learning

algorithms, brain function, and machine learning necessary to build a cortical

learning algorithm.

• Develop a fully functional, open source hierarchical temporal memory algorithm

library for use in research applications and continued development of the cortical

learning algorithm.

• Evaluate the cortical learning algorithm through classification performance

utilizing hierarchical structuring and hierarchical classification

• Understand and document the variables (e.g. sparsity) of CLAs

• Identify future work necessary to continue cortical learning algorithms and

hierarchical temporal memory research.

• Theorize how cortical learning algorithms and hierarchical temporal memory

systems can be applied to motor control applications.

Thesis Structure

• Chapter 2 describes the cortical structures of the brain by starting at the lowest level,

the neuron, and build upon by describing the brain’s architecture to define the

www.manaraa.com

8

cortical structures of interest. Next, we identify which cortical structures are most

likely responsible for biological intelligence and present their structures.

• Chapter 3 reviews applicable machine learning principles and high level

descriptions of machine learning algorithms, including deep machine learning

architectures in order to relate cortical learning algorithms to the current state-of-

the-art.

• Chapter 4 develops a relationship between the properties of the brain and machine

learning applications in hopes of illustrating the potential properties and

applications of an intelligent machine.

• Chapters 5 describes the proposed cortical learning algorithm developed in this

study, and its various derivatives including supervised, unsupervised, and alternate

CLA models. Furthermore, pseudocode and graphical examples of the various

algorithms are described. Finally, Chapter 5 outlines the experiments conducted in

order to validate the CLA design and assess its performance.

• Chapter 6 describes the experimental setup, validation and verification exercises

used to test the developed CLA, and illustrates the results of the various

experiments used to quantify the CLA and hierarchical classification performance.

• Chapters 7 discusses the results of the cortical learning algorithm and hierarchical

structuring experiments, draw conclusions, and discusses future work.

www.manaraa.com

9

Understanding the Brain

This chapter briefly describes the cortical structure of the neocortex and analyzes

the cortical structures of the neocortex. This chapter begins with the basic unit of the

nervous system (the neuron) and expands to cortical column and neocortical regions.

Furthermore, the thalamus and hippocampus are briefly described due to their highly

coupled interaction with the neocortex.

Cortical Structures

Figure 1. Unipolar Neuron [13]

Neuron. The fundamental unit of the brain is the neuron. The average human brain

contains an estimated 100 billion neurons and 100 trillion synapses [14] that create an

incredibly complex neural network more capable than any super computer on earth today

at perception and complex multidimensional control problems. The brain contains many

types of neurons but they all function in a similar manner with a nearly uniform function:

www.manaraa.com

10

neurons are signal processors. The neuron is made up of three main parts: soma (or cell

body), dendrites and axon as illustrated in Figure 1.

Figure 2. Neurotransmitters and Receptor Site

The soma, or cell body, is the prominent part of the neuron containing the nucleus

and surrounding organelle. Aside from building proteins and basic cellular operations, the

soma is the originator of action potentials that ultimately transmit neurotransmitters. The

cell body of a neuron can also contain synapses for incoming electrochemical

neurotransmitters of neighboring cells.

Dendrites are branch-like protrusions that originate at the cell body of a neuron.

They act to conduct the electrochemical signals from other neurons and play a crucial role

in regulating production of action potentials. Electrochemical neurotransmitters interface

between axons and dendrites via synapses. Synapses contain neurotransmitter receptor

sites that accept excitatory or inhibitory neurotransmitters. This explanation of excitatory

www.manaraa.com

11

or inhibitory neurotransmitters is over-simplified but, for the purposes of this thesis, is

sufficient for first-order modeling of the neuron.

Figure 3. Ion channel carrying action potential over time

Axons are long tail-like structures that are used to carry action potentials to the axon

ending signaling neurotransmitters from the soma to neighboring cells. Axon endings carry

excitatory or inhibitory neurotransmitters to other neurons that can create or inhibit neuron

excitation of the neighboring cell. It is worth noting that axons are the primary component

of what is commonly referred to as “white matter” in the mammalian brain. The white in

“white matter” is observed from the myelin sheath that coats an axon. The myelin sheath

acts as an insulator allowing ions (i.e. action potentials) to travel significantly faster from

the originating soma to neighboring cell’s synapses to release their intended

neurotransmitters.

www.manaraa.com

12

Figure 4. Example of a single action potential

As illustrated in Figure 3, the ion channels of an axon allow a positive electrical

membrane potential to flow from the cell body, towards the axon ending. The positive

electrical membrane potential produced is commonly referred to as an action potential.

Action potentials, or spikes, are a short lasting electrical events in which the electrical

membrane potential of a cell rapidly rises in voltage and then quickly falls back to a

baseline voltage, or resting potential. Moreover, action potentials frequently occur as a

series of temporally spaced pulses (commonly referred to as pulse trains). The pulse train

spikes are the neurons main communication mechanism to neighboring cells and other

biological tissue via the axon.

Figure 4 illustrates a generic, single action potential as voltage vs time. The voltage

is measured across the neuron’s membrane and an action potential usually occurs on

millisecond time scales. Figure 5 displays a common pulse train of action potentials. Pulse

trains are commonly recorded during cell “bursting” or burst firing. A burst is a

phenomenon normally observed as neuron activations in the brain and spinal cord [15].

www.manaraa.com

13

Again, for the purposes of this thesis, a simplified model of bursting is assumed for

intercellular communication.

Figure 5. Example of a neuron pulse train

Neocortex. The neocortex (which literally means “new bark” in Latin) is the

outermost region of the brain and is well-developed in most mammals. As previously

stated, the main focus of this thesis is the neocortex. It is essential to focus on the neocortex

because it is common among all intelligent species and is essential to understanding

intelligence and intelligent behavior. The neocortex is the most obvious location to search

for high level intelligence as the human neocortex is highly evolved and is responsible for

our superior planning abilities, complex motor control, complex reasoning abilities,

creativity, etc. Furthermore, using modern brain imaging technologies such as functional

magnetic resonance imaging (fMRI), researchers have been able to map high-level

cognitive functions such as speech, facial recognition and memory recollection to the

neocortex. This thesis primarily focuses on mammalian cortex (primarily the neocortex)

www.manaraa.com

14

because a large majority of neurobiology research is grounded in the mammalian neocortex

– i.e. there is a large volume of research to leverage.

Figure 6. Neocortex Location [16]

The neocortex is a sheet of neurons arranged in a columnar structure known as

cortical columns. The layers of cortical columns comprise a large sheet of neural tissue that

is folded in on itself to fit within the human skull and envelopes the old brain. This giant

sheet of cells alone is estimated to contain approximately 30 billion neurons [3]. The

neocortex is able to store all memories, skills, knowledge, and life experiences. It can

process modal signals such as feel, see, smell, hear and taste – furthermore, it can navigate

and control biological machines in three dimensional space. In order to truly understand

intelligence, we must study how information is processed and stored in the neocortex. The

following sections define a high level understanding of the neocortical structure.

 Neocortical structure. In 1978, Vernon Mountcastle published a widely cited

paper [1] outlining the remarkably uniform appearance and structure of the neocortex.

www.manaraa.com

15

Mountcastle observed that every region of the brain - whether it be the visual cortex,

auditory cortex, prefrontal cortex, etc. - share the same basic structure [3] [1]. Except for

minor discrepancies, such as neocortical thickness and cell density, Mountcastle argues

that all regions of the neocortex must be performing the same basic operation (or algorithm)

to learn. Mountcastle describes the neocortex as a “large number of modular elements

linked together in echeloned parallel and serial arrangements” [1]. This arrangement is well

documented in neuroscience and consists of a basic unit of cells – the “minicolumn” (or

cortical column). Mountcastle argues that cognitive functions such as hearing and vision

are not the same, yet their signals are processed in identical fashion. He argues that

functions such as motor control operate in the same way as well. This hypothesis is highly

supported by experimental evidence where small mammals’ optic nerves were rewired

from the visual cortex to the auditory cortex at birth and the animals learn to see via the

auditory cortex [17].

This uniformity across the entire neocortical structure cannot be understated and is,

in fact, the basis of this thesis and cortical algorithm developed in this effort. Mountcastle’s

insight suggests that the brain (neocortex in particular) is a complex system comprised of

a network of cortical columns that act as the basic unit. It is likely that the cortical columns

relationships and interconnectivity between the cortical layers and neighboring columns

produce intelligence, or are a fundamental component of intelligence as we observe in

humans and other species. As machine learning and pattern recognition researchers, we

can utilize this knowledge of the neocortical structure to start developing and implementing

algorithms that model this complex neural structure.

www.manaraa.com

16

Figure 7. Cortical Column [18]

The cortical column consists of six distinct layers of neurons and is widely

considered to be the basic unit of neocortical function [3] [1] [19]. Each cortical column is

approximately 2 mm in height by 30 micrometers [19] in diameter. The six distinct layers

of neurons are highly interconnected. It is important to note that layer I is widely cited as

containing very few neurons but many axons – although many neurons from layer II/III

have dendrites in layer I [3]. Because layer I contains mostly axons, it is normally ignored

when describing the neocortical structure.

The six layers of the cortical column have distinct roles in processing signals. Layer

IV is the input layer of the neocortical sheet (thalmocortical connections) [12] [19]. A

thalmocortical connection is a neural connection that originates from the thalamus and

terminates in the neocortex. Layers II and III, which are normally lumped together, receive

signals from Layer IV. Furthermore, Layers V and VI are outputs of the neocortex. Layer

VI sends signals from the neocortex to the thalamus (corticothalmic connections) whereas

Layer V sends signals to subcortical structures, other regions (corticortical connections)

www.manaraa.com

17

and to the spinal cord [20] [12] [11]. Corticothalmic connections are a neural connection

that originates from the neocortex and terminates in the thalamus whereas a corticortical

connection originates from one column of the neocortex and terminates in a neighboring

column of the neocortex.

Table 1

Firing Modes and Neural Pathways [12]

Firing Modes Tonic: Neural mode induced by a modulator

pathway to suppress neuron from reaching excited

state in the case of driver afferent signal.

Burst: Excited state of neuron which is induced by

driver afferent signal.

Neural Pathways Driver: Message carrying pathway from neuron to

neuron.

Modulator: Signaling pathway that sends

excitatory or inhibitory behavior from neuron to

neuron.

Neural pathways. There are two primary types of inter-neural pathways, drivers

and modulators [12]. Drivers are the primary message carrying mechanism for

thalamocortical and corticortical afferents, whereas modulators strictly alter the

effectiveness of the driver signals/connections [12] [21]. For example, a driver afferent

signal originates from the periphery, or sensory organs, arrive at the thalamus and is routed

via thalamocortical connection to the neocortex [22]. Modulators, which can be found in

connections originating from Layer VI in the neocortex to the thalamus, control the firing

mode of the neurons to which they are connected.

www.manaraa.com

18

Although there are many different neurotransmitters, subcategories of drivers and

modulators and firing modes, it is sufficient to over generalize the various modes of

signaling throughout the brain in order to reduce the developed cortical algorithm’s

complexity while investigating the brain’s basic functionality. Table 2 summarizes firing

modes and neural pathways identified by neurobiology researchers [12]:

Neocortical regions.

Layer IV. Layer IV of the cortical column is the primary, feed-forward input layer

to the cortical column – i.e. the sensory/motor inference layer. It receives strong driver

signals from thalamocortical connections. These driver signals may originate from the

periphery organs (relayed via first order thalamus), from lower order regions of the

thalamus or from neighboring cortical columns [11].

Layers II and III. Layers II and III receive signals from Layer IV of their cortical

columns and closely interact with Layer II and III of neighboring cortical columns.

Connections through Layer II and III are thought to be, primarily, modulating signals that

place their neighboring columns’ cells in tonic or burst modes [3] [11]. Furthermore, the

layer II and layer III likely responsible for high-order inference memory – i.e. layer II and

layer III is where memory and prediction intersect.

Layer V and Layer VI. Layer V and Layer VI act as the output of the neocortex.

Layer V contains large pyramidal neurons which produce driver signals. These driver

signals produced by layer V neurons terminate in the higher order regions (HO) of the

thalamus, higher regions of the neocortex and/or routed to associated muscle groups via

neural pathways though the brainstem.

www.manaraa.com

19

Table 2

Neocortical Layer Description

Layer I Structure: Mostly axons and sparsely arranged

granular pyramidal neurons.

Functionality: Corticortical signal transport.

Layer II and

III

Structure: Mostly axons and sparsely arranged

granular pyramidal neurons.

Functionality: Modulatory connections to

neighboring columns of Layer II and III cells.

Layer IV Structure: Large star-shaped neurons (astrocytes).

Functionality: Cortical column input, feedforward

output to cortical column.

Layer V Structure: Mix of normal pyramidal neurons and

very large pyramidal neurons.

Functionality: Motor output, feedforward output to

thalamus and neocortical regions.

Layer VI Structure: Normal pyramidal cells.

Functionality: Feedback modulator to thalamus.

Thalamus. The thalamus is an extremely important cortical structure that sits above

the brainstem and is about the size and shape of a walnut.

The thalamus acts as the brain’s signal router; it is the interface between the body

and cortex. It is worth noting that it is not accurate to describe the thalamus as simply a

signal router - recent research suggests the thalamus plays key roles in other brain functions

such as attention and synchronous communication between different brain regions, among

others [21].

www.manaraa.com

20

Figure 8. Thalamus Location [16]

The importance of the thalamus cannot be overstated. For example, a patient with

a damaged thalamus is considered brain dead - no sensory information can reach the

patient’s cortex. In mammals, the thalamus possesses billions of corticothalamocortical

(connections from the neocortex, to the high order thalamus, then back to the neocortex)

nerve fibers that are directly connected to all neocortical regions [11]. This complex

circuitry allows regions of the neocortex to send processed signals from, for example, the

visual cortex to the parietal lobe.

The thalamus, along with corticocortical afferents, enables the mammalian brain to

be wired in a hierarchical network [11]; this hierarchy of low-level to high-level brain

regions is likely a key component to intelligence. Thalamic research has shown that the

thalamus is broken into two major types of thalamic regions, first order (FO) and higher

order (HO) regions [12] [22]. The FO regions of the thalamus receive signals from, for

example, sensory organs and relay the sensory signals to the respective primary sensor

regions of the neocortex via thalamocortical connections. The primary sensory region then

sends its output signals back to the HO regions of the thalamus via corticothalamic

www.manaraa.com

21

connections. The HO regions of the thalamus then routes the signals to higher order regions

of the neocortex via thalamocortical connections [11].

The corticothalamocortical connections of the brain are modeled via driver signals

from one cell region to another in the cortical learning algorithm developed for this thesis.

The driver signals are used for both classification and motor control signals. The simplified

neural model is illustrated in Figure 9 where circles represent the granular neurons found

in Layer II/III of the cortex, the stars represent the astrocytes neurons found in Layer IV

and the triangles represent the pyramidal neurons found in Layers V/VI. Furthermore, in

Figure 9, illustrates the simplified neural model utilized for the algorithm in this thesis

where signals flow up a cortical hierarchy from periphery modalities to higher regions in

the brain via corticothalamocortical connections [11].

Figure 9. First order and high order thalamic connections

www.manaraa.com

22

Hippocampus. The hippocampus is one of three large brain structures that are

positioned between the midbrain and under the neocortical sheet (illustrated in Figure 10).

The hippocampus sits atop of the logical hierarchy of brain structures [3]. All new and

novel signals from the lower regions are identified, classified and stored for later

recollection in the hippocampus. The hippocampus is important in the formation of new

memories, spatial memory, and navigation. The processing and storage mechanism of the

hippocampus is necessary for efficient use of brain resources [3]. Moreover, without the

hippocampus (bilateral hippocampal damage) it is impossible to form new memories – this

phenomenon is referred to as anterograde amnesia.

Figure 10. Hippocampus Location [16]

The hippocampus’s unique neurological position in the cortex makes it responsible

for the ultimate realization of signals processed in lower brain regions. As signals

propagate up the neural hierarchy, anything new and/or novel projects onto the

hippocampus where the new memories can be quickly processed and stored for later

classification in the neocortex.

www.manaraa.com

23

Figure 11. Cortical Region Interaction

Ideally, every time a novel signal arrives at the hippocampus, the hippocampus

retains the novel signal in the appropriate lower neocortex structure. The next time this

previously novel signal starts to propagate up the brain’s hierarchy of regions, the pattern

(which was previously stored by the hippocampus in the neocortex) will be identified and

classified by the neocortex. This classification by the neocortex can then be processed as a

single, invariant representation rather than being processed further by the hippocampus.

Therefore, this frees the hippocampus to focus on other, more novel signals.

The hippocampus is where memory formation occurs [8]. Our ancestors were able

to use the hippocampus as a mechanism for spatial recognition and decision making when

confronted with new/novel experiences and locations. In modern day humans, we use the

hippocampus to process new/novel events or ideas - such as meeting a new colleague,

reading a news story or learning a new skill. Each of these novel experiences are auto-

correlated to current or past experiences at the highest level. When a novel event occurs,

such as meeting a new work colleague, that first meeting is auto-correlated in your

www.manaraa.com

24

hippocampus to the current location, what you were doing prior to meeting your new

colleague, the subject of conversation you and your new colleague talked about, etc. It is

then the hippocampus’s job to take that newly formed memory and store it, including all

auto-correlated events associated with the newly formed memory, into the neocortex (our

long term memory).

It is important to note that the neural function that allows the hippocampus to

“write” new memories to the neocortex is not fully understood by researchers, although,

the neural function responsible for storing new and novel memories likely involves back

propagation of signals from the top of the hierarchy to the lower levels. This thesis focuses

on the high level functionality of the hippocampus – the ability to auto-correlate novel

ideas, places or events and efficiently store them for classification automatically in the

future.

www.manaraa.com

25

Machine Learning

The purpose of this chapter is to familiarize the reader with applicable machine

learning theories and techniques as they relate to the proposed cortical learning algorithm

(CLA). Three high level classes of machine learning algorithms (supervised, unsupervised

and reinforcement learning) are discussed. Moreover, both shallow and deep machine

learning architectures are explored for context. A basic background in machine learning is

assumed.

Figure 12. Common classier design [23]

Supervised Learning

A supervised learning algorithm uses labeled training data to model a system for

classification of new, unknown examples of unlabeled data in the same feature space.

www.manaraa.com

26

Supervised learning is often associated with “classification,” and typically involves

adaptively changing the parameters of a model, or classifier, until the model of the output

fits the training data [24]. Figure 12, illustrates a common approach when designing a

classier for real-world applications.

Training data contains labels (classes) and features. Labels are normally a scalar

value that uniquely identifies the entity within a group.

Figure 13. Common classifier system architecture [23]

An applicable example of a supervised learning algorithm is the multilayer

perceptron (MLP). The MLP uses a cost function to minimize the error between labeled

classes and labeled data. MLPs use back propagation to relate a known class (label) to

www.manaraa.com

27

various numerical examples, or features, of that class. By using a cost function (such as

mean-squared error between actual and desired response), the back propagation algorithm

minimizes the average error between a known class and the features that represent that

class. Once a supervised MLP has been trained, it is then possible for the algorithm to

accept unlabeled data and infer to the corresponding class. A common architecture used in

trained classifier operation can be seen in Figure 13.

Reinforcement Learning

Reinforcement learning algorithms are used to solve the problem of sequential

decision making by a system receiving delayed rewards as a function of performance

towards a known goal or cost function [24] – i.e. reinforcement learning algorithms give

their systems explicit goals, can sense their surrounding environments, and can choose

actions to influence their environments to yield higher rewards. The reinforcement system

is not told which actions to take but instead must discover which actions yield the most

reward by heuristically searching for an optimal solution [25]. As with most systems, there

is a challenging tradeoff with reinforcement learning algorithms - between exploitation and

exploration. For a system to receive a reward, it must perform actions that have proven to

be effective in the past. If the system is only using techniques it has identified as lucrative

in the past, then it is simply exploiting the reinforcement learning algorithm to receive a

reward, but may miss a better solution by not exploring alternate solutions. Whereas if the

system is only searching for new ways to solve a problem, it is only exploring its solution

space, and may suffer too much cost at little or no benefit. A healthy balance between the

previously described exploitation and exploration must be tuned per application of the

reinforcement learning algorithm.

www.manaraa.com

28

It is important to note that reinforcement learning is different than supervised

learning because supervised learning takes advantage of examples provided by a

knowledgeable external supervisor (i.e. a labeled dataset). However, supervised learning is

not capable of learning from interactions within a new environment as it is usually

impractical to obtain datasets of desired system behavior in all situations where a system

must perform. Thus, reinforcement learning algorithms perform best when a system is

navigating uncharted territories where a supervised learning algorithm would likely fail.

Unsupervised Learning

Unsupervised learning is a subset of machine learning and pattern recognition

commonly used in applications such as data mining. Unlike supervised learning, all data

passed into an unsupervised learning algorithm is unlabeled and unlike reinforcement

learning, there is no error or reward signal to assess the solution. Unsupervised learning, in

most applications, is simply trying to find structure in unlabeled data. Unsupervised

learning has huge implications in fields such as “Big Data” where huge amounts of

unlabeled data are available, yet manually classifying that data is logistically or

economically unfeasible. Many techniques exist to achieve unsupervised learning such as

clustering algorithms, sparse coding or hidden Markov models.

There are many unsupervised learning algorithms in the context of neural networks,

one of which is of importance in recent years - deep learning. Deep learning is a subset of

machine learning algorithms that model high level abstractions of input data using a

hierarchy of lower level abstraction layers until a class can be identified at a higher layer.

Deep learning will be covered in detail in subsequent sections due to its applicability to the

CLA and hierarchical temporal memory structure.

www.manaraa.com

29

Applicable Machine Learning Algorithms

Much of the past quarter century in machine learning has provided us with non-

parametric learning algorithms that can approximate any input-output mapping (e.g. MLP,

decision trees, support vector machines, etc.). Given sufficient training data and

computational resources, the non-parametric learning algorithms have proven invaluable

in machine learning research and industry applications. However, new architectures (e.g.

deep belief networks), which take advantage of hierarchical structures, have become

increasingly popular in solving perception and highly nonlinear controls problems (e.g.

driverless cars, natural language, etc.) [7] [26] [9]. This pivot to perception and nonlinear

control has proven that our current “off-the-shelf” algorithms do not perform well on

perception and highly nonlinear problems – problems that humans find trivial.

Additionally, deep belief networks share the same foundation and properties as the CLA

proposed in this thesis. For the purposes of this thesis, deep learning (or deep belief)

networks are highlighted due to their applicability to the CLA. Before defining deep

architectures, it is necessary to touch upon poplar shallow architectures as a means for

comparison.

Shallow architectures, typically, use one layer of abstraction in order to execute

their objective function. Many of the popular non-parametric, shallow architectures (i.e. –

Support Vector Machines, Multilayer Perceptron) struggle when confronted with complex

perceptual tasks such as computer vision, especially when there is complicated intra-class

variability [7]. This single layer’s job is to match input patterns to output patterns (training

data), normally accomplished through back propagation techniques. In contrast, deep belief

networks are implemented using stacked, hierarchical architectures – analogous to the

neocortical structure described in the previous chapter. Moreover, akin to the proposed

www.manaraa.com

30

cortical learning algorithm, deep belief networks treat machine learning tasks as different

aspects of a generalized problem – deep belief networks seek to build a model of the

network’s observable world in an unsupervised fashion. In the following sections we

examine both shallow and deep architectures.

Shallow architectures. Shallow architectures in machine learning have been the

basis for most research throughout the research field’s history. In this section, various

shallow architectures are explored that are commonly used in machine learning

applications.

Figure 14. (a) Unipolar neuron (b) Perceptron model

Neural networks. Neural networks constitute a large field of machine learning and

pattern recognition. Inspired by the central nervous system of animals, the traditional

perceptron network uses weighted connection between nodes to classify a given input. The

www.manaraa.com

31

most notable neural networks are the multilayer perceptron network (MLP) and radial basis

function (RBF). Both networks have been staples in the machine learning field for decades

and have been exhaustively studied and tested on a wide verity of applications. The focus

of this section is artificial neural networks (ANNs) and MLP because of its biologically

inspired association to the cortical learning algorithm.

𝑛𝑒𝑡 = ∑ 𝒙 ∙ 𝑤𝑇 + 𝑤0

𝑛

𝑖=0

Equation 1

𝑦 = 𝑓(𝑛𝑒𝑡)
Equation 2

Where:

 x is the feature vector

 w is the perceptron weights

 w0 is the bias

 net is the net sum

 f is the activation function

 y is the output

Artificial neural networks (ANNs) can be trained using supervised learning

algorithms, unsupervised learning algorithms or reinforcement learning algorithms. ANNs

were devised to mimic the decision making ability of the brain and brain function as

understood in the late 1950’s when the perceptron model was introduced. The perceptron,

seen in Figure 14b, utilizes a weighted sum of an n-dimensional feature vector passed

through an activation function to produce an output. The perceptron creates a linear

decision boundary and is characterized by the following equation:

www.manaraa.com

32

The activation function, f, of a perceptron model is typically one of three types of

functions: thresholding function, identity function or sigmoid function. Each function is

characterized by the following equations:

 Thresholding function

𝑓(𝑛𝑒𝑡) = {
1, 𝑖𝑓 𝑛𝑒𝑡 ≥ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

or

𝑓(𝑛𝑒𝑡) = {
1, 𝑖𝑓 𝑛𝑒𝑡 ≥ 0

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Equation 3

 Identity function

𝑓(𝑛𝑒𝑡) = 𝑛𝑒𝑡
Equation 4

 Sigmoid function

𝑓(𝑛𝑒𝑡) =
1

1 + 𝑒−𝛽∙𝑛𝑒𝑡

Equation 5

Each activation function can be selected by the user for desired outputs for a given

application. The choice of activation function determines whether or not the perceptron

creates a polarizing output (-1 or 1), binary output (0 or 1), linear output (identity function)

or nonlinear output (sigmoid).

The perceptron, by itself, is only useful in the case of linearly separable feature

vectors. For example, a simple perceptron model is unable to solve the logical XOR

problem [27]. Considering most practical applications of machine learning are non-linear,

the perceptron is limited in its usefulness. Therefore, the multilayer perceptron (MLP) has

www.manaraa.com

33

proven valuable for nonlinear problems. The MLP is an artificial neural network that

became very popular in the 1980’s and has been exhaustively studied and tested throughout

the subsequent decades. As proven in Rumelhart et. al [28], the MLP was able to overcome

the XOR problem by utilizing a layer of hidden units as illustrated in Figure 12.

Figure 15. MLP architecture

As seen in Figure 15, the MLP architecture is a feedforward perceptron network

comprised of an input layer, hidden layer(s) and an output layer. Thus, if the right

connections from input to a large enough set of hidden units, it is possible to always find a

representation that will perform mapping from input to output through the hidden units

[28]. This architecture allows for an abundance of variations including activation functions,

learning rate, number of hidden nodes, number of hidden layers, etc. This structure is

trained by adjusting its weights as the squared error on labeled training data is minimized

in relation to a cost function. This learning rule is called the back propagation. Furthermore,

www.manaraa.com

34

it has been shown that any decision boundary function of arbitrary dimensionality can be

achieved with a single hidden layer [6].

Statistical approaches. Statistical algorithms in machine learning use a

probabilistic approach for classification decisions. Generally, probabilistic approaches are

characterized by having an explicit underlying probabilistic model which provides a

probability of being in each class rather than simply a classification. There are dozens of

examples of statistical learning algorithms and their practicality in real world applications

cannot be understated. Although statistical algorithms are pervasive throughout the

machine learning field, for the purposes of this thesis, this section provides only a very

brief explanation of statistical algorithms due to our focus on biologically inspired

algorithms.

The most obvious example of a statistical machine learning algorithm is the Bayes

classifier. This approach can be best exemplified by the following statistical equations that

calculates the posterior probability of a class given the likelihood, evidence and prior

probability. The Bayes and Naïve Bayes classifier chooses the class with the highest

posterior probability. Therefore, statistically speaking, the Bayes classifier is the best

classifier one can build (described by Equation 6).

𝑃(𝜔𝑗|𝑥) =
𝑝(𝑥|𝜔𝑗) ∙ 𝑃(𝜔𝑗)

𝑝(𝑥)

Equation 6

Where:

P(ωj|x) is the Posterior Probability

p(x|ωj) is the Likelihood

P(ωj) is the Prior Probability

p(x) is the Evidence

www.manaraa.com

35

There are many examples of statistical approaches in machine learning including

(but not limited to) linear, quadratic, and logistic discriminant, K-nearest neighbor, causal

networks, etc. Each of the aforementioned statistical approaches to classification are well

documented [29] [24] [23] and continue to be applied in a wide range of research and

applications.

Decision trees. Decision trees are members of a more general class known as

graphical models. Decision trees can be described using graph theory and graph

terminology [24]. Decision trees use a series of rules in order to build models of their

training data – these rules allow the decision trees to essentially memorize the data. This

makes them incredibly prone to over fitting and are generally considered weak classifiers.

Once trained, decision trees are not computationally complex - they are a series of “if”

statements. Their instability and low computational complexity make the classifier perfect

as a base classifier for ensemble systems.

They are surprisingly similar to the CLA in that decision trees and the CLA are

deterministic and memorize incoming data. The main difference between decision trees

and the CLA is that the CLA “forgets” instances of training data by degrading Hebbian

connections over time. Furthermore, the CLA can operate completely unsupervised

whereas decision trees need labeled data to set up rules for the decision tree to follow and

classify.

Deep architectures. Deep architectures have a distinct advantage over shallow

architectures in that they can trade space for time [7]. In other words, the deep structure of

stacked, hierarchical hidden layers in the deep architecture allows for the lower levels to

www.manaraa.com

36

represent low-level abstractions and upper level high-level features. This tradeoff between

space and time has been coined the depth-breadth tradeoff [7].

Deep architectures are fundamental to the operation of deep belief networks. Most

deep belief networks (commonly known as deep learning networks) are composed of a

multi-layer neural network architecture which contains several layers of parameterized,

non-linear hidden layers. Each layer, or module is subject to learning layer at a time in a

hierarchical fashion. The following sections will capture the fundamental operating

principles of deep belief networks and relate deep belief networks to the CLA proposed in

this thesis.

Deep belief networks. Deep networks, neural networks consisting of many hidden

layers, had been found to empirically perform no better (often worst) than neural networks

with one or two hidden layers [30]. These finding hampered the progress of deep networks

until recent methods introduced by Hinton et al. [26] for training deep layered networks

based on greedy, layer-wise unsupervised learning showed promising results [7]. Hinton

et al. demonstrated that it is possible to teach a deep, densely connected belief network one

layer at a time by assuming the higher layers do not exist when the lower layers are training

[26]. Deep belief networks (DBNs) pair feedforward layers with a feedback layer that aims

to recreate the input of the layer from its output. This method guarantees that most of the

information contained in the input is preserved at the output of the layer [7] and results in

the deep belief network’s architecture. After the initial unsupervised

feedforward/feedback, layer by layer training has occurred, the network is then refined

using a supervised back propagation method. This unsupervised feedforward/feedback

pairing followed by supervised refinement results in the upper layers of the DBN

www.manaraa.com

37

representing abstract concepts that explain the input space while the lower layers extract

low-level features from the feature space. In other words, the DBN’s lower layers learn

simple concepts first, then the upper layers build on the simple concepts to create more

abstract concepts (as seen in Figure 16).

Figure 16. Deep architecture example [5]

A greedy layer-wise training algorithm proposed by Hinton et al. [26] is the basis

of training deep belief networks and operates by training the network one layer at a time

[6]. Initially, deep belief network takes empirical data as an input and models it resulting

in an empirical distribution of the first layer of the deep belief network. The following

equation denotes the empirical distribution of training the deep belief network:

www.manaraa.com

38

𝑝1(𝑔1) = ∑ 𝑝0(𝑔0)𝑄(𝑔1|𝑔0)

𝑔0

Equation 7

Where:

p is the empirical distribution

p1 is the “empirical” distribution over the first layer

g0 is the empirical data

g1 is the first layer

Q(g1|g0) is the posterior probability associated with training the first layer

The idea of training a deep belief network using a greedy layer-wise training

algorithm is that after the top-level layer, layer L, of a L-level deep belief network, one can

change the interpretation of the network parameters to insert them in a (L+1)-level deep

belief network – i.e. the distribution 𝑝(𝑔𝐿−1|𝑔𝐿) from the neural network associated with

layers L-1 and L is kept as part of the deep belief network generative model [6]. In other

words, it is possible to train a deep belief network layer by layer resulting in increasingly

abstracted representation of the input layer, g0. Following the initial greedy layer-wise

training algorithm to build the deep belief network’s layers, it is necessary to fine-tune the

structure by tuning all of the layers parameters together. This is accomplished using a

supervised, back propagation method to fine tune the network and minimize the error of

the trained deep belief network.

Deep belief networks allow for top down, multilayer neural network connections

to generate sensory data rather than classifying the data [31]. Furthermore, deep belief

networks form many hidden layers a hierarchy of abstraction layers where the lowest layers

learn low-level features and higher layers learn generalized representations of the low-level

abstractions – i.e. as low-level, sensory signals move up the hierarchy of hidden layers, the

low-level features build high-level, generalized classifications (illustrated in Figure 16).

www.manaraa.com

39

The resulting hierarchy of hidden layers in the deep belief network shares a similar

structure and functionality to the hierarchy of cortical learning algorithms structures that

are the focus of this thesis.

The architecture and training process using in DBNs are similar to the methods

developed and implemented in this thesis using the CLA and hierarchical structuring

methods. Bengio et al. concluded that unsupervised learning layer by layer greatly

increases the supervised optimization over traditional supervised deep or shallow

architectures [6]. It is likely that these same conclusions will hold true for hierarchical

structured CLA cell regions as deep belief networks. It is worth noting that, although the

architecture and training process of DBNs are similar to the CLA by utilizing unsupervised

learning layer by layer, the mathematical methods used in DBNs are not similar to the

algorithmic methods used in the CLA. Therefore, a strong understanding of DBNs is not

necessary to understand the implementation of the CLA. For more information on the

methods and processes used to implement DBNs, please reference Bengio et al. [6] and/or

Hinton et al. [26].

www.manaraa.com

40

Relationship Between the Brain and Machine Learning

This chapter provides a link between properties of brain structure and function (e.g.

hierarchy, sparse activation, etc.) and common machine learning techniques (e.g. anomaly

detection, data fusion, etc.). The correlation between machine learning techniques and

brain structure and function is important for illustrating the potential use of biologically

inspired brain algorithms in machine learning and pattern recognition fields.

Figure 17. Illustration of the uniformity in neocortical column structure across the

neocortex [32]

Properties of the Brain

The brain is a biological pattern recognition machine. The brain allows for complex

interactions with the world and demonstrates a diverse set of cognitive functions such as

sight, language and planning. Considering the broad spectrum of tasks and functions the

brain can accomplish, one may intuitively believe that there must be a wide variety of

specialized neurological structures to accomplish these various tasks. However,

neurobiology research reveals this is, likely, not the case [17] [3]. In fact, a very uniform

www.manaraa.com

41

structure can be observed across the neocortex and other brain regions associated with

cognition and learning [1].

As illustrated in Figure 17, various brain regions (that demonstrate completely

different functions in the brain) all share the same fundamental 6 layer structure. The

discovery of the uniform structure of the neocortex is widely attributed to V. B.

Mountcastle et al. [3] [1]. Because of the brain’s incredibly uniform structure, it is

reasonable to hypothesize that there must be an underlying algorithm that composes the

formation of intelligence which the brain utilizes for all of its complex cognitive

functionality [3]. This section describes the assumptions and pattern recognition properties

of the brain to characterize the methodology used to develop the cortical learning

algorithm.

Online learning. The brain is an online learning machine - it tries to make sense

of the world in real time in order to maximize its chances of survival. Online learning, in

the context of machine learning, takes place when data becomes available in a sequential,

temporal manner. Online learning algorithms update their models as each new piece of data

becomes available. Like online learning algorithms, brain structures have evolved to

characterize large volumes of high frequency sensory data streams in order to store and

learn its environment in an online fashion. Simultaneously, the brain is constantly

searching for previously learned patterns to make decisions in real time as well as store any

new patterns of information. This process of storage and recollection allows the brain to

recall the learned patterns for future reference and has been coined the memory-prediction

framework by Jeff Hawkins [3].

www.manaraa.com

42

Many traditional machine learning algorithms learn in an offline setting – offline

learning is a useful technique in many engineering applications but limits the algorithms to

a static model of the world until new data is available for retraining. Offline learning

normally takes place using batches of data – i.e. stored datasets that are used to train the

offline learning algorithm to model the dataset. Offline learning, generally, does not allow

the algorithms’ learned model of the world to be modified in real time – i.e., as new data

becomes available. Conversely, online learning allows the algorithm to modify its model

of the world which – when implemented by the brain - provides the brain with an

evolutionary advantage by continuously learning from each new input. Online learning

lends itself well to common machine learning problems such as learning in nonstationary

environments or learning previously unseen new classes.

To create an intelligent system, it is necessary to build a system that learns in (near)

real time. Post processing information (offline learning) can still be a useful tool to refine

and reinforce a model built by the system, but this thesis hypothesizes that online learning

is an essential property to any real time intelligent system.

Hierarchy. Hierarchy in the brain, as described in Chapter 2, is essential to the

cognitive operation of the mammalian brain. Hierarchy in the brain is observed as low level

sensory signals that move from the primary sensory regions of the brain towards the high

level regions of the brain [5] [3] – e.g., from the primary sensory regions of the brain to the

frontal lobe and hippocampus. As these low level sensory signals move to higher level

regions of the brain, it is theorized that the signals become more and more abstract. An

increasingly abstract signal in the brain can be described as an existing signal that is

becoming increasingly representative of an idea rather than a signal that has physical

www.manaraa.com

43

meaning from peripheral sensory organs. In other words, an abstracted signal represents

ideas in the high level regions of the brain whereas a low-level signal directly represents a

modalities raw sensory stream. The abstraction of low-level signals creates a logical

hierarchy of brain regions used for intelligent tasks such as complex motor control and

perception. The hierarchical structure of the brain starts with sensory organs and ultimately

ends at the hippocampus. The following paragraphs illustrate the flow of signals up the

hierarchy of the nervous system.

Figure 18. Example hierarchy of cell regions

The hierarchy of the brain, more specifically the nervous system, starts at the low-

level, quickly varying sensory signals produced by the sensory organs (e.g. eyes, ears, skin,

etc.). These sensory signals are carried via nervous system to the brainstem, then arriving

at the first order (FO) thalamus. The FO thalamus routes the sensory signals to their

www.manaraa.com

44

corresponding primary sensory areas in the neocortex via white matter. The primary sensor

areas of the brain are the cerebral areas that receive sensory information from thalamic

nerve projects and are the foundation of the logical neocortical hierarchy. As illustrated in

Figure 18, signals that arrive at the primary sensory regions of the brain and report their

signals “up” the cortical hierarchy. It is important to note that “up” or “down” the

neocortical hierarchy is not a physical location above or below the corresponding

neocortical cell regions – i.e., if a signal is moving “up” the hierarchy it is passing

processed, slower varying signals to the next region via corticocortical and

corticothalamocortical connections.

The neural hierarchy operates in a fashion analogous to the hierarchical structures

of most large corporations. Starting at the employee level where many employees may

work for a single manager - that manager (and many more managers) then report to a mid-

level manager. The layers of managers repeat until the top of the hierarchy, the CEO and

board of directors.

The analogy between corporate organizational structure and the neural hierarchy is

also true for communication between the hierarchies. Information can flow up the

hierarchy, being reported one level at a time up to the top of the hierarchy (if necessary).

Furthermore, signals can also feedback down the hierarchy from higher regions to lower

regions or laterally within the same level of the hierarchy. Feedback signals from higher

regions are analogous to a manager informing or giving directions to his or her employee,

whereas lateral signals are analogous to two mid-level managers reporting status of their

organization to each other.

www.manaraa.com

45

The visual cortex is an excellent example of how the cortical hierarchy operates.

The visual cortex consists of many cell regions including the primary visual cortex, V1,

and the extrastriate areas V2, V3, V4, and V5 (to name a few). Raw sensory information

from the optical nerve arrives at the thalamus and is routed to V1, the visual primary

sensory area. In the primary sensory area of V1, quickly varying raw light signals from the

retina are processed and reported up the hierarchy to V2 then V3 and so forth. As signals

move from V1 to V2, V3 and so forth, the signals become slower, more generalized and

more abstract (much like deep belief networks). At the higher level regions of the visual

cortex, like V4 and V5, the visual cortex is processing colors and complex shapes like

circles, stars, motion, human faces, cats, etc. This high level image information is used in

high level functions of the brain such as reasoning, perception, and complex motor

commands.

The neurological hierarchy of regions, in short, takes rapidly varying, low-level

signals and converts them to slowly varying (or increasingly invariant), high-level ideas.

Creating invariant signals at the higher level regions of the brain is necessary for the auto

association of signals and formation of ideas by the regions of the brain. Furthermore, the

auto association of these high level signals is used for perception of the outside world.

Time sequences. The brain operates in the time domain as sequences of patterns

that are stored and recalled as a function of time. Time sequences are sequences of

information stored temporally. An example of a time sequence is musical notes played

sequentially over time to form a song. There are numerous examples how the brain

temporally stores patterns – the following is a simple experiment that shows how difficult

it is to divert from a learned pattern stored as a time sequence: recalling the alphabet from

www.manaraa.com

46

“z” to “a”. This task becomes very non-trivial because most people have not learned the

alphabet in reverse order [3]. It takes a large amount of conscious effort to reverse the

learned pattern of letters from childhood and recite them from “z” to “a”.

Without using time, tactile and auditory senses become impotent. For example,

simple tactile contact with a surface will not allow the brain to infer what type of surface

the skin is touching (i.e. type of material). Once the fingertip starts to slide across the said

surface, the brain can infer what the surfaces material properties are and classify the surface

as wood or tile, for example. This is a nonobvious example of time sequence memory: not

until the fingertip begins to travel across the surface, as a function of time, can the brain

infer that the very grainy, non-uniform structure is a wooden tabletop, for example.

Furthermore, a more obvious example of time sequences is auditory signals over

time. The brain perceives auditory signals as a time series of frequencies. These time series

of frequencies may represent the chorus of a song, sound of a passing car or a sentence

spoken by a close friend. All are examples of stored sequences of auditory patterns: songs

are a time series of frequencies prepared by an artist, the sound of a passing car is a series

of frequencies characterized by the Doppler effect, and spoken language is a series of

syllables, learned during childhood, that represent words and ideas.

In machine learning, recognition of time sequences can be grouped into temporal

pattern recognition algorithms that encode or decode patterns over time. Time is embodied

in temporal pattern recognition algorithms using temporal order and time duration [33].

There have been many temporal pattern recognition algorithms such as short-term memory

(STM) models, template matching using Hebbian Learning, Multilayer Perceptron (MLP)

approach, and spiking neural networks, among others. Wang et al. [33] and Kasabov et al.

www.manaraa.com

47

[34] describes a variety of STM models and neural network models for temporal pattern

recognition that are inspired by the temporal pattern recognition properties of the brain.

There are a limitless number of example from all senses and high level thought that

illustrate the importance of time sequences in the brain. It is reasonable to assume that time

sequences in the brain play a crucial role in learning, inference and prediction, all of which

are included in the understanding of a truly intelligent system. Therefore, any system that

models intelligence must take into account the role time plays in storing patterns.

Sparsity. Sparsity in the brain is a storage and semantic meaning mechanism that

is the basis for neocortical function. Sparsity can be defined as thinly distributed or

scattered. In the context of the brain, sparsity is a measure of how many neurons are active

at any given time. Sparsity is best understood when contrasted against traditional storage

and meaning representations. For example, in a computer, information is represented as a

stream of logical 1’s and 0’s called bits. Traditionally, computer architects and computer

scientists intend on minimizing the amount of bits necessary to store information in order

to conserve memory. This approach of information storage can be referred to as dense

representation. Dense representation encodes a piece of information using an arbitrary

assignment. A good example of this is ASCII code. ASCII code was developed to

standardize the letter and number representation for the transmission of digital information.

In ASCII the letter “t” has a binary code of “01110100.” Each bit in the binary code has no

specific value, “t” was merely assigned the 8-bit word as part of the ASCII convention.

This dense representation contrasts sparse representation – as illustrated by example in the

following figure, Figure 19:

www.manaraa.com

48

Figure 19. (a) Dense representation (ASCII encoding) (b) Sparse representation

As seen in Figure 19b, sparse representation stores letters by semantically assigning

each letter a specific bit to represent meaning rather that the arbitrary assignment of an

encoded binary value as in the dense representation, Figure 19a.

Sparse representation trades memory efficiency for semantic meaning. In other

words, sparse representation of information does not care to minimize the amount of bits

needed to store information. Instead, sparse representation attempts to store information in

a manner that guarantees semantic significance of the individual bits.

In the brain, neurons are activated sparsely – meaning that only a very few number

of neurons are active simultaneously [35]. This sparse neural activity semantically

correlates to the constant flow of time sequences projecting onto the neocortex. In other

words, the brain sparsely actives neurons throughout to represent the world. The following

is a grossly oversimplified example of sparsity in the brain: when the brain identifies a cat,

the “cat” neurons [9] in the brain become active while the “dog”, “frog”, “rhino”, etc.

neurons stay inactive. The sparsity allows the brain, at the highest level, to semantically

represent the cat and identify it in the world.

In pattern recognition and machine learn, sparsity is a common tool used by

researcher for computer vision as well as other pattern recognition applications. In

www.manaraa.com

49

computer vision, sparse signal representation has proven to be a powerful tool for

acquiring, representing and compressing high-dimensional signals [36]. Using sparse

representations, researchers have been able to achieve state of the art results by sparsely

representing data as a subset of a learned dictionary of information. In other words, sparse

representations are able to sparsely represent a high-dimensionality signal with low-

dimensionality structures. The research conducted by Wright et al. [36] demonstrates the

power of using sparsity for high-dimensionally problems in pattern recognition much like

sparsity is utilized in the high dimensionality sensory input stream to the brain.

Attention. The brain, at any given time, is handling millions of sensory inputs from

the periphery. Everything an individual sees, hears, feels, smells and tastes is nothing more

than a stream of action potentials relayed via axons by the thalamus from the body’s

periphery. Furthermore, the brain is constantly sending output driver signals to skeletal

muscles, organs, etc. to keep the body operating and maximize the organism’s chance of

survival. In order to make sense of the surrounding environment, the brain must prioritizes

some sensory signals over other sensory signals. This prioritization of sensory signals can

be understood as attention. Attention, in the context of this thesis, is the brain’s ability to

dynamically focus on specific sensory signals over other sensory signals.

The two feedforward pathways responsible for focusing attention are direct

corticocortical and corticothalamocortical pathways, often following parallel paths (Figure

20). Specifically, a driver signal from lower cortical regions travels from cortical region to

cortical region via direct driver connections and from cortical region to high order (HO)

thalamus then to cortical region [11].

www.manaraa.com

50

Figure 20. Corticocortical and corticothalamocortical connections from low level regions

to high level regions

An example of attention and memory storage can be illustrated by two strangers

meeting for the first time. At first meeting, when two strangers shake hands and exchange

name they have no prior knowledge of each other. The brain, during the initial meeting,

has now focused its attention specifically on this unknown person. It is no longer focusing

its attention on the other conversations happening concurrently or what it had for breakfast,

it is now focusing its attention on the conversation with the person it has just met. After the

brief conversation, the brain has learned the other person’s name, and any other details

picked up during meeting. The information about this newly met acquaintance, at the

highest level in the brain (the hippocampus), has now been auto-associated to their face,

subject of conversation, etc. and the memories are stored in the cortex. The next time the

two people meet, the stored memories can be auto-recalled by the brain at lower levels

freeing the higher regions and allowing them to focus attention elsewhere.

www.manaraa.com

51

Another example of attention is learning a new motor skill. Motor commands, such

as kicking a soccer ball or throwing a baseball, consist of complex set of instructions sent

from various motor processing regions of the brain, to the midbrain, then to the spinal

column, finally terminating in precise progression at the skeletal muscles. The signals

delivered by the brain direct the skeletal muscles contract and relax to allow the athlete to

kick a soccer ball or throw a baseball. Additionally, using the eyes and various

somatosensory organs, the brain tracks the movement of the limbs completing a feedback

loop between motor command and motor response. This complex iteration coordinates

muscles and motor commands, while optimizing the desired output, and takes an enormous

amount of attention to learn. This learning process (e.g. the best way to shoot a soccer ball

at a goal) comes in the form of intense practice. For example, the first time an individual

kicks a soccer ball he or she needs to focus intently on where to plant the stationary foot,

how to swing the kicking foot forward, and where precisely to strike the ball. Each time

that the feedback loop closed and the soccer ball is struck, the brain stores the complex

sequence of commands to use later. After sufficient practice, the act of shooting a soccer

ball becomes “second nature.” – i.e. the individual has learned the proper sequence of

motor commands in order to kick the ball and for the intended goal or action

It is reasonable to argue that attention is simply a neural pathway from lower

regions of the cortical hierarchy to the top of the hierarchy (the hippocampus). By focusing

attention, bringing lower level ideas to the hippocampus, the brain is able to make sense of

complex details. Once the brain makes sense of these details, the hippocampus (responsible

for memory storage) can store the newly formed ideas in the cortex. By storing the ideas

in the cortex, the brain can automate the attention process in the future.

www.manaraa.com

52

Modelling of attention in pattern recognition and machine learning is largely based

off selective attention and prescriptive attention models that are inspired by biological

processes. These attention models have been applied in applications such as handwritten

digit recognition and face recognition by exploiting the fact that real images often contain

vast areas of data that are insignificant from the perspective of pattern recognition [37].

This selective attention to detail is analogous to the corticothalamocortical pathways,

described earlier in this section, the brain uses to select signals that contain useful

information. For more information, the attention research demonstrated in Salah et al. [37]

describes selective attention and prescriptive attention models and results used in pattern

recognition of handwritten digit recognition and face recognition.

Invariant representation. The neocortex is a large, six layer sheet of nerve cells

of about the same area as common dinner napkin when unfolded [19] [3]. The neocortical

sheet can be divided into several regions. Each region is arranged in a hierarchical fashion

where the lowest region is an input region and the subsequent regions are higher order

regions. The regions pass feedforward information up the hierarchy via

corticothalamocortical connection (as illustrated in Figure 9). These cortical brain

structures allow the neocortex to create invariant representations. An invariant

representation, in the context of the brain, is a signal (or group of neurons) that remains

active to represent an experience (e.g. physical object, state, feeling, etc.) being observed

by the brain.

A primary sensory area is a region of the cortical structure that directly receives

sensory information from thalamic nerve projection (e.g. primary auditory cortex that is

responsible for interpreting the signals produced by the cochlea). When sensor inputs are

www.manaraa.com

53

generated, they ultimately arrive at the primary sensory area as quickly changing,

fluctuating signals. Quickly changing, fluctuating signals are difficult to classify in real

world, real time applications. In the machine learning and pattern recognition fields,

common techniques such as preprocessing, feature selection algorithms and feature

extraction are used to reduce complex, highly parallel signals into their core components

for classification. The mammalian brain is quite different - sensory organs have evolved to

filter out unnecessary information but have also evolved to incorporate any environmental

signal that maximizes the chances of survival. Thus, the brain is continuously flooded with

millions of sensory signals from the body’s periphery. How does the brain make sense of

all of this information? In a few words, invariant representations.

We will use three contrived brain regions (R1, R2, and R3) located in the neocortex

as an example. The signals in the lowest region, R1 (which represents the primary sensory

region), are quickly varying. The primary sensory region, R1, begins to characterize

common patterns from the high frequency periphery data as invariant signals. The lower

brain regions then project the signals “up” to the next region in the hierarchy of brain

regions. As we move up the hierarchy of brain regions, signals become increasingly

invariant. For example, the primary sensory region, R1, may receive quickly changing

frequency information from the inner ear (cochlea). R1’s job is to characterize the

frequencies sensed by the cochlea into an invariant representation that represent low level

sounds that are passed that to the next highest region, R2. Region R2’s job is to take the

invariant representation from R1 and characterize the sounds (e.g. notes, voices, etc.).

Furthermore, the invariant representations from region R2 is then passed up to the highest

level region in this brain system, R3. Region R3 accepts the invariant representation of

www.manaraa.com

54

region R2 and characterizes the high level sounds for recognition. In other words, sensory

signals that travel into the brain are characterized into increasingly invariant

representations of the world. This is precisely why when an audience hears the first few

notes of Beethoven’s 5th Symphony, they are immediately able to characterize the

remainder of the symphony as Symphony No. 5. Another real world example of invariant

representation is when talking to a close friend. The brain automatically scans the close

friend’s face via saccades performed by the eye. Primary sensory regions of the visual

cortex, V1, characterize low level details of the face. The low level signals from V1

propagate up the cortical hierarchy becoming increasingly invariant. In the higher regions

of the visual cortex, invariant signals terminate in the fusiform gyrus (the face recognition

region of the brain) where an invariant representation of the close friend remains.

Signal agnostics and plasticity. All sensory data streaming into the brain are

relayed as a stream of action potentials, or neural spikes – i.e. the brain does not care if the

action potentials represent auditory information, visual information, temperature

information, etc. – the brain is simply making predictions and storing information about

the patterns it has observed in the past. Because the brain does not discriminate against

arriving action potentials, the brain demonstrates signal agnostics.

Signal agnostics has been demonstrated in neurobiology research [17] [38] [39]

using cross-modal experiments where the inputs of one sensory modality are re-directed to

a different modality, in effect “rewiring” the brain in mice. For example, when the visual

signals originating from the retinas were “re-wired” to the auditory cortex of infant mice,

the mice still learned to see through their auditory cortex. The research shows evidence

that cortical areas have inherent propensity for the processing of subtypes of information

www.manaraa.com

55

(i.e. auditor cortex performs well at processing temporal signals and visual cortex performs

well at processing spatial signals) due to millions of years of evolution. However, even

though the primary sensory regions have an inherent propensity, the experiments show that

the cortex is highly plastic and can adapt to its inputs (e.g. teaching the auditory cortex to

see) because of the signal agnostic and plasticity properties of the cortex [38].

Another demonstration of learning through signal agnostics is leveraging existing

senses to learn external signals – this is called sensory substitution [40]. D.M. Eagleman et

al. have demonstrated many different experiments using sensory substitution to give

participants super-human senses using simple vibrating motors on their skin. For example,

the team was able to teach a deaf person to hear letters by simply activating a vibrating

motor array (same motors found in cell phones) on their back. The audio patterns picked

up from a microphone were encoded into motor vibrations and relayed over the vibrating

motor array. Other experiments by Paul Bach-y-Rita et al. have proven similar sensory

substitution over a tongue electrode array. Sensory substitution demonstrates the brain’s

plasticity and agnostics to incoming signals.

Signal agnostics in most pattern recognition and machine learning algorithms is

common. For example, given normalized input signals, a MLP model does not discriminate

between the normalized input signals, the MLP is simply trying to classify its inputs. In

other words, an MLP will attempt to classify any dataset it has been trained on – it does

not matter whether that dataset represents pictures of cats or audio of natural language.

Alternatively, plasticity is less prevalent in machine learning and pattern recognition. The

aforementioned MLP that was trained to identify pictures of cats will have a difficult time

identifying pictures of sharks, for example, without disrupting the prior knowledge of cats.

www.manaraa.com

56

Many traditional machine learning and pattern recognition algorithms are designed to learn

a dataset but do not adapt to changing data distributions over time. This inability to adapt

makes many traditional machine learning and pattern recognition algorithms develop static

models of their world, unlike the brain. An example of adaptive, or plastic, algorithms in

pattern recognition are adaptive resonance theory (ART) introduced by Carpenter et al.

[41] describes an algorithm that identifies objects as a result of the interaction of top-down

observed expectations with bottom-up sensory information and offers a solution to the

plasticity/stability problem where new information can be learned without disturbing

existing knowledge, much like the brain.

In order to create an intelligent machine, it is reasonable to hypothesize that the

machine must encode sensory information as a generalized input (such as action

potentials). Guaranteeing that signals entering the intelligent machine are signal agnostic

allows for a generalized learning algorithm to understand the fundamental patterns in the

signals and build a model of its environment (like the CLA algorithm).

Pattern Recognition Properties of an Intelligent System

In the context of machine learning and pattern recognition, all of the

aforementioned neural properties of the brain lead to a suite of very useful machine and

pattern recognition properties that the brain utilizes to demonstrate intelligence. This

section highlights and describes many of the common machine learning and pattern

recognition properties that are exhibited by the brain and attempts to demonstrate how

and/or why the brain is capable of these properties.

Resistance to catastrophic forgetting. Catastrophic forgetting is a commonly

observed problem of traditional machine learning algorithms. Catastrophic forgetting is the

susceptibility of a classifier to abruptly (and often completely) forget information or

www.manaraa.com

57

patterns previously learned when learning new patterns or information. The brain,

however, does not suffer from catastrophic forgetting (aside from traumatic events or

diseases such as Alzheimer's). This makes evolutionary sense: if the brain were to

catastrophically forget information about past locations or vital information just so it can

learn new information, it would significantly reduce the organism’s chances of survival in

the given environment. Therefore, the cortical learning algorithm must demonstrate

resistance to catastrophic forgetting.

Data fusion. The brain is continuously streaming in large volumes of high

frequency data points from the periphery via sensory organs. This high frequency

information is continuously being utilized to build a model of its environment. Data fusion,

in the context of machine learning, is the process of integrating information from multiple

features from multiple sources of data that represent the same real world object or

environment. A biological example of data fusion may be the integration of various sensory

organs to describe a single object – such as an apple. The representation of an apple

incorporates the way its waxy skin feels on the fingertips, the color of the skin observed

with the eyes, the sweetness on taste buds and the very distinct sound heard when the apple

is bitten. The brain is capable of incorporating the numerous sensory information streams

about an object (e.g. an apple) into one singular representation. In other words, the brain is

able to combine many independent sensory signals into a single representation.

A similar example of data fusion, in the context for control theory, is the sensor

fusion between a gyroscope and accelerometer when tracking inertial measurements. These

two independent sensors, when used together, provide more complete information about

the way an object is moving in three dimensional space. Unfortunately, just using a single

www.manaraa.com

58

accelerometer cannot always extrapolate angular rate of an object moving in space and a

single rate gyroscope cannot sense the influence of gravity or body accelerations on an

object. When the sensory information from both sensors are combined, however, it is

possible to precisely track the movement of an object throughout 3 dimensional space. This

technique of data fusion can be used to control a car, plane, multi-rotor helicopter, etc.

Data fusion in pattern recognition and machine learning can be classified into the

following categories: complementary, redundant, and cooperative data fusion [42].

Complementary data fusion is used when input sources represent different or overlapping

parts of a scene. Redundant data fusion is used when data sources represent the same scene

which can be fused to increment confidence. Cooperative data fusion is used when

information provided is combine to form new information that is typically more complex

than the original information. A review of data fusion techniques in machine learning can

be found in Castanedo et al. [42] research published in The World Scientific Journal.

The brain, just like a data fusion algorithm, is able to combine different sensory

streams into an abstracted understand of the world around it. All cortical learning

algorithms must be able to combine any sensory input (i.e. signal agnostics) and create a

high level understanding of the various signals to properly model the operating

environment.

Noise resistance. Sensory organs and man-made sensors are not perfect. When

operating in an uncontrolled environment, there are many sources of noise that may corrupt

a system. The brain is capable of automatically isolating important sources of information

and correcting for imperfections within its own biological system. The brain’s ability to

reduce noise allows two people to carry out a conversation in a very loud environment or

www.manaraa.com

59

pick specific flavors out of complex dishes. The ability of the brain to “filter out” what it

understands to be noise in the signal demonstrates noise resistance within the cortical

system.

Noise resistance, in machine learning and artificial intelligence, is a common

problem that is usually handled via filtering (preprocessing) raw data before using them

with a machine learning algorithm. Further examples of noise reduction in machine

learning include: wavelet transforms, nonlinear filters, anisotropic diffusion, fuzzy logic,

etc. For examples of how noise reduction algorithms are used, Hu et al. [43] illustrate a

comparative intelligibility study of noise reduction on corrupted microphone data. The

brain does not have the ability to preprocess data (like many machine learning algorithms)

because it runs in an online fashion – i.e. the brain cannot store raw sensory information

for processing later. Instead the brain has the ability to focus attention on specific pathways

during learning in order to filter the noisy signal. Although we do not conclusively know

the specific method for the noise resistance in the brain, a plausible hypothesis is that the

hierarchical structure of the brain naturally denies noise in the raw sensory stream to

propagate up the cortical hierarchy. In other words, low level brain regions actively dampen

the sensory stream resulting in a progressively cleaner signal as the signals move higher up

the hierarchy of brain regions. The inherent ability for the brain to reduce noise because of

its hierarchical structure allows for the high level, low noise signals perceived by the brain.

Cortical learning algorithms must filter noise without preprocessing data streams

in an online fashion. The cortical learning algorithm developed for this thesis assumes that

the above hypothesis that the hierarchical structure of the brain inherently filters noisy

signals is true. This noise resistance of the CLA is demonstrated later.

www.manaraa.com

60

Anomaly detection. The brain is constantly making predictions about what it will

experience next within its environment. If the brain does not make a correct prediction

about its environment, it becomes active (or a bursting state) - i.e. when a signal violates

the predicted model of the environment, the brain becomes surprised. The brain has

specifically evolved to detect anomalies within its environment. The active state of the

brain is analogous to anomaly detection. In machine learning and pattern recognition,

anomaly detection is the observation of events or patterns that do not conform to the

developed models – i.e. detection of outliers. Some examples of popular techniques of

anomaly detection in pattern recognition include density based techniques (like k-nearest

neighbor), use of support vector machines, cluster based outlier detection, fuzzy logic

based outlier detection, etc. An overview of anomaly detection techniques in pattern

recognition can be found in Patcha et al. [44] overview of anomaly detection algorithms.

In the context of evolutionary survival, the brain’s natural tendency to seek out

anomalies and focus its attention on the anomalies makes sense. Whenever the brain’s

model of the world is violated, it works to analyze the cause of the violation and assess if

the violation is a threat. The next time that this specific violation or anomaly occurs, the

brain will have learned how threatening the anomaly is to its survival and how to react.

This very useful tool that has naturally evolved in the brain is commonly used in a variety

of applications in machine learning and pattern recognition fields. For example, Numenta

(Jeff Hawkins company) is using cortical learning algorithms and hierarchical temporal

memory to detect anomalous behavior in web server operations. When a violation of the

server’s model is sensed, Numenta’s software (Grok) alerts the server’s operators so they

www.manaraa.com

61

can analyze and take action on potential server issues before any serious or catastrophic

events take place.

Non-stationary environments. The environment in which a biological system

resides is ever changing. There are always new social interactions, differences in weather

patterns, new locations and even new predators that a biological system must sense,

interpret and model to maximize its chances of survival. Therefore, the brain is well

adapted to handle learning and modeling of an ever changing environment. In pattern

recognition and machine learning fields, such environments are named non-stationary

environments. In non-stationary environments (in the context off machine learning and

pattern recognition) the underlying data distribution for a given class changes over time –

i.e. the features that represent a class at t0 do not represent the same class at a later time, tn.

Traditional machine learning and pattern recognition algorithms do not handle non-

stationary environments well because they have been developed assuming the class

boundary remains constant over time. However, this assumption need not be true. Recently,

more and more pattern recognition and machine learning problems have gone online (i.e.,

data arrives incrementally over time) and it is not guaranteed that the class boundary

remains static. When a data stream experiences changes (or drifts) to the class’s boundary

over time, the non-stationary environment is said to experience concept drift. In order for

a machine learning algorithm to operate in real world environments, it must be resistance

to concept drift by reclassifying, or reassessing the class boundary over time [45].

Algorithms such as Learn++
.NSE use an ensemble of classifiers that learn over time

in a non-stationary environment where the class boundary does not remain static. For more

information on pattern recognition and machine learning algorithms relating to non-

www.manaraa.com

62

stationary environment, Ditzler et al. [46] have conducted a survey of algorithms that

perform in non-stationary that include Hierarchical ICI, Learm++.NSE, massive online

analysis, among others.

Non-stationary environments can lead to catastrophic forgetting and other

nontrivial engineering problems when designing machine learning and artificial

intelligence algorithms. The brain handles operation in non-stationary environments by

constantly making and testing predictions based on the current state and auto associating

those predictions with previously learned models. Therefore, it is necessary for machine

learning algorithms, which model the brain, to operate in non-stationary environments and

assume that data used to model its environment will experience concept drift.

New class. Supervised machine learning algorithms use labeled training data from

a known number of classes in order to later classify incoming, unlabeled data. If a new,

unknown class is introduced to the system post training, the traditional machine learning

algorithm will not adapt and wrongly classify the data. For example, traditional machine

learning algorithms, such as a multilayer perceptron (MLP), can be used to identify dogs

and cats. Once the algorithm is trained using training data that contains only pictures of

cats and dogs, the hypothetical learning algorithm can classify photos of dogs and cats

correct for 100% of all instances. However, if a photo of a bird was introduced to the trained

learning algorithm – the algorithm would output “cat” or “dog” (depending on the features

it has extracted from the photo), not a bird. Because the algorithm was trained using only

two labels (or classes), it would never be able to classify anything but cats or dogs correctly.

Although this example of adding a new class to a trained learning algorithm is very simple,

www.manaraa.com

63

it illustrates that an online learning algorithm that models the brain must be able to

dynamically add new classes to the system without implicitly retraining the entire system.

www.manaraa.com

64

Cortical Learning Algorithm

The Cortical Learning Algorithm (CLA), outlined by Jeff Hawkins [3] and

Numenta, Inc. [4], is a biologically inspired algorithm that takes advantage of our

understanding of the neocortical structure and the neocortical operation. The focus of this

thesis, like the CLA outlined by Numenta, is the neocortex – i.e., the memory and

prediction structure of the brain. Although each brain system discussed in previous chapters

have a distinct role in processing and interpreting continuously streaming signals from the

sensory organs, the neocortex appears to be the structure of the brain with the largest

influence on intelligence and intelligent behavior - therefore, the neocortex was chosen as

a starting point for this research.

The CLA mimics the basic functionality of the cortical columns of the neocortex

and emulates many of the properties of the brain that were outlined in Chapter Chapter 4.

In order to sufficiently model the functionality of the neocortex, the following properties

were engineered into the CLA developed for this thesis: online learning, time sequences,

sparsity, cellular regions, hierarchy, prediction and invariant representation. To reiterate,

the purpose of this thesis is not only to model the functionality of the neocortex and build

upon the work of other CLA researchers, but to lay the framework for motor control via

cortical learning algorithms – I believe that by modeling the aforementioned principles,

new insights to cortically inspired motor control algorithms may emerge.

The CLA was designed with user experience and portability in mind for later use

in relevant applications. A couple key features were set as requirements for the CLA:

scalability, internet protocol (IP) communication, and easy visualization. Furthermore, the

www.manaraa.com

65

CLA was designed to easily switch between unsupervised learning, supervised

classification and control tasks. The purpose of these requirements were to: 1) validate that

cortical learning algorithms can learn in a networked and highly coupled fashion in order

to build hierarchical CLA structures 2) understand if supervised and unsupervised learning

are possible via the same CLA algorithm (with minor modifications and 3) to understand

if the CLA is capable of motor control.

This chapter discusses the design goals, design process, and the overall system

architecture of the CLA algorithm. Furthermore, CLA pseudo code is provided as well as

descriptions of the experiments designed to test the CLA algorithm.

Neocortical Principles

This section describes the various neocortical principles (e.g. online learning, time

sequences, sparsity, cellular regions, hierarchy, prediction and invariant representation)

and how the principles are modeled and implemented.

Online learning and time sequences. In order to model online learning in time

sequences, the CLA operates in discrete time steps where patterns are observed by the CLA

one step at a time. This functionality is implemented by passing in a series of numbers, one

discrete time step at a time.

Cell regions and hierarchy. The neocortex is comprised of distinct regions where

signal processing occurs. These regions of cells are responsible for everything from speech,

vision, and motor commands to high level reasoning. The regions form logical hierarchies

where low level feature extraction from the periphery feeds sensory signals up the

hierarchy of brain regions to form high level abstractions. As signals move up the hierarchy

they become increasingly invariant and are used for high level pattern recognition. The

regions of cells are made up of a variable number of groups of cortical columns. These

www.manaraa.com

66

groups of cortical columns (referred to as cell regions in this thesis) act as a modular unit

of parallel processing capability. It is likely, in the context of neurobiology, that larger cell

regions correspond to more complex input signals (e.g. the visual cortex is much larger

than the auditory cortex) - therefore, a cortical learning algorithm must be able to

dynamically add cortical columns to a cell region as the complexity (i.e. - size of the input

vector) increases.

Modeling these cell regions is a requirement for cortical learning algorithms, much

like the one developed for this thesis. Furthermore, it is possible to create independent

processing units by breaking the CLA into discrete regions. These independent processing

units can work in parallel – e.g., on different threads, processing cores or even different

networked computers. The independence of the discrete cell regions modeled in the CLA

allow for distribution of the workload amongst many machines. Moreover, it is then

possible to logically stack the discrete cell regions into a hierarchical structure. CLA

hierarchical structuring is very analogous to the thousands of different cell regions in the

biological brain all processing millions of sensory information simultaneously.

Sparsity. Sparsity is fundamental property of the neocortical structure and is a key

requirement of the developed CLA. Sparsity, in the context of this thesis, is a measure of

how many cortical columns are active at a given time within a region – i.e. each cell region

must maintain a specified level of sparsity. For the CLA to perform nominally, it is

necessary to maintain a specific level of sparsity during CLA operation. For example, if a

level of sparsity of 1% is necessary to maintain proper CLA functionality for a 1

dimensional input vector, we must guarantee that, during every time step, a maximum of 1

column of cells is active and for every 99 other columns of cells that are not active. For a

www.manaraa.com

67

two dimensional input vector, we must guarantee that a maximum of two column of cells

are active and a minimum of 198 other columns of cells are not active and so forth.

Therefore, sparsity is maintained during CLA operation by limiting the number of columns

of cells active within a cell region during each discrete time input.

Prediction and invariant representations. In the brain, as signals move up the

hierarchy of regions, information changes less often. This is due the abstraction of low

level features and results in the invariant representation of a pattern at the higher levels of

the hierarchy. In other words, invariant representations are slowly changing signals (or

representations) that stay active while a pattern is being identified.

The invariant representation of objects, sounds, tastes, etc. allows the neocortex to

make predictions as information is flowing into the brain via sensory modalities. For

example, when someone begins singing “twinkle, twinkle little ____,” it is possible to fill

in the blank. This prediction comes from the abstraction and invariant representation of a

common childhood song learned over time. The brain abstracts the audio frequencies

picked up from the ear (more specifically the cochlea) into high level, invariant

representations of words. Those high level words, in that specific order yield a prediction

of “star” following “twinkle, twinkle little.” In other words, the brain is constantly making

predictions (in real time) to identify patterns. Every time a pattern is correctly predicted,

that pattern is reinforced in the brain. The reinforcement of patterns over time creates a

belief, or prediction. This functionality and fundamental property of the brain is encoded

into the CLA and hierarchy of cell regions by constantly assessing what the next pattern

that the CLA is likely to observe – i.e. during each time step (or time sequence), the CLA

makes a prediction about what it will observe during the next time step, prior to

www.manaraa.com

68

observation. If the CLA correctly predicts the next time step, it knows that its model is

valid. Although, if the prediction is wrong, it knows that is has identified a new pattern.

Cortical Learning Algorithm Design

This section describes the design of the CLA using the neocortical principles of the

brain as well as additional engineering requirements used to design the CLA. The

additional requirements used to design the CLA are derived with usability and portability

in mind.

Modularity. In order to build an algorithm for potential use in machine learning

and pattern recognition applications, the CLA is structured for modularity. Modularity, in

the context of the CLA, is defined as the ability for the CLA to dynamically add processing

units as needed. This section discusses how the CLA achieves a modular solution and the

CLA’s system architecture.

The described modularity was attained through a high-level object oriented

language, visual C#. Visual C# allows the algorithm to grow in an online learning

environment by dynamically calling processing units in software. Furthermore, the

hierarchical nature of the neocortical structure was taken advantage of during the

implementation of the system. The neocortex operates in a hierarchical fashion, therefore

it is possible to take advantage of the hierarchical structure when implementing the system

in code. As seen in Figure 20, information processed in a lower level region is passed in

parallel via cortico-cortical and cortico-thalamo-cortical connections to higher regions of

the neocortex [22] [21] [20] [47]. Information processed in lower regions is relayed to high

regions in an increasingly invariant form [3], therefore it is possible to think of the

information flow between cortical regions as packets of information being passed from one

processing unit to another - a hierarchical web of decentralized processors.

www.manaraa.com

69

Figure 21. Example of hierarchy of networked computers

The overall system was designed to incorporate the cell regions and hierarchical

principles outlined in Chapter 2 as proposed by highly tested and validated assumptions of

the hierarchical structure of the brain [3] [11]. This hierarchical design can take advantage

of individual system threads and networked computers allowing for a highly scalable

overall system architecture. The system architecture is covered in subsequent sections.

Communication between cell regions is accomplished by serializing a CLA

communication packet and sending the packet over transport layer protocols. For this

thesis, UDP (User Datagram Protocol) was selected for inter cell region communication.

Networked communication between cell regions allows for a scalable network of

CLAs by sending CLA communication packet over IP if necessary – i.e. if more processing

units are required for a given problem, the user can dynamically add a processing units to

the network via local host or connected machines.

www.manaraa.com

70

Each CLA communication packet contains all necessary input and output

information for the networked CLAs including source CLA’s identification number and

CLA’s output information.

Visualization. Visual inspection of the cellular regions developed by the CLA is

important to verifying the operation of the algorithm as well as inspection of the Hebbian

connections created by the algorithm. In order to visualize the CLA, after training, the

algorithm logged the cellular structure of the cell region as well as the weighted value of

the Hebbian connections between individual cells- i.e., all cells and axons of the cell region

were saved as a visualization file for post-processing. Visualization of the saved cell region

can be loaded in Gephi, an open graph visualization platform [48]. The data visualization

of cell regions proved invaluable during testing, debugging and presenting the CLA. Gephi

allows the user to select individual or multiple cells for analysis. The strength of the

Hebbian connections are illustrated in connection thickness - i.e. the thicker the cellular

connection, the stronger the connection weight. This visualization tool allows for quick,

visual debugging of the CLA by checking cell connections and showing how the CLA was

predicting future signals.

CLA structure. This section describes the structure of the CLA, implementation

of the CLA, and how the biological elements of the brain are modeled into artificial entities.

There are only four elements to the CLA: supergranular cells, name cells, cell columns and

cell region. A basic understanding of computer science is assumed – i.e. knowledge of data

structures and functions (e.g. classes, lists, methods, etc.).

www.manaraa.com

71

Table 3

Supergranular Cell Lists

Method Name Method Description

Input Connections Input connections list holds pointers to neighboring

supergranular cells that are connected to a supergranular cell.

Output Connections Output connection list holds pointers to neighboring

supergranular cells that a supergranular cell is connected to.

Connection

Strengths

Connection strength list holds the output connection strength

of each connection to other supergranular cells.

Supergranular cell. The supergranular cell is an artificial class in the CLA modeled

after the theoretical processes of a biological supergranular cell found in layer 2/3 of the

neocortex and is the fundamental pattern recognition component in the CLA. The

supergranular cell connects to neighboring cells in the cell region via Hebbian connections

which create a network of cells used to predict future time steps. The supergranular cell

model contains several lists (Table 3) for handling outgoing and incoming signals from

connected cells.

Table 4

Supergranular Cell Methods

Method Name Method Description

Activate Activates Cell functionality when evoked putting the cell into

an active or predictive state.

Send and Receive Sends “action potential” to all output connections. Receive

accepts “action potential” and calls the activate function.

Modify Connections Modify connections methods either create, strengthen, decay

or destroy Hebbian connections between supergranular cells.

www.manaraa.com

72

Table 5

Column Class List and Variables

Variable Name Variable Description

Cells Cells list is a list of either supergranular or name cells

contained in the column

Prediction Value The prediction value of a column holds a scalar value relative

to how likely the column is to fire in the next time step. This

value can be normalized by the region in order to predict the

next input.

Table 6

Column Class Methods

Method Name Method Description

Activate The Activate method is called when the region receives that

column’s index.

Burst The Burst method is called when the column receives a signal,

yet none of the cells contained in the column were in a

predictive state. The burst method activates all cells contained

in the column.

Modify Cells The column class is able to modify, add or destroy cells

contained in the column. This functionality allows for the

column to scale as needed for the application

Name cell. The name cell is a special class of supergranular cell that models layer

5 pyramidal cells and layer 2/3 supergranular cells. The purpose of a name cell is to identify

strong Hebbian connections between supergranular cells and create an invariant

representation of the connected cells. The name cell model assumes that a strong Hebbian

connection between supergranular cells indicates that a pattern has been identified.

Because the name cell is a subclass of the supergranular cell superclass, the name cell

inherits the same functionality as the supergranular cell with the addition of a list of output

regions. The list of output regions is used to pass the invariant representation of the

connections it has characterized to high regions of the system. Therefore, as signals move

www.manaraa.com

73

from lower level regions to higher level regions, the signals become slower and

increasingly invariant.

Table 7

Region Lists and Variables

Variable Name Variable Description

Cells Activity Monitors Cell activity in region.

Columns List of columns in cell region.

Column Prediction List of column prediction values used to predict which column

will fire next.

Name Cells List of name cells contained in the region.

Output list List of active name cells used pass invariant representations to

the next higher region.

Region

Bookkeeping

Variables used for region bookkeeping include current time

step, input and output regions, input to region and outputs from

region, etc.

Region Parameters The region parameters are used to tune the region for specific

applications.

Column. The column class is a container that holds either supergranular or name

cells. When a signal arrives at the cell region, the signal holds a list of indices. The indices

indicate which column of cells will become active during that time step. The column class

models the cortical column (or minicolumn) as described throughout neurobiology

literature [19] [47] [22] [3] [20]. The column class models signals sent from the thalamus

to layer 4 neurons in the neocortical sheet and contains a variety of lists and methods in

order to manage and distribute the signals to the supergranular cells and name cells.

www.manaraa.com

74

Table 8

Region Methods

Method Name Method Description

Activate Activate function starts a single time step for the CLA.

Furthermore the activate function activates cell columns as

specified by the input string.

Input and Output The input and output methods parse incoming column indices

for column activation. The output method uses name cell

activation to create output string of indices to pass to higher

level regions.

Feedback The feedback method takes inputs from higher level regions

and plays back patterns stored in the Hebbian connection of

the cell structure.

Modify Columns The column class is able to modify, add or destroy columns

contained in the region. This functionality allows for the

region to scale as needed for the application

Modify Cells The region can modify cells by commanding the columns class

to call appropriate cell modification methods.

Send Predictions The send prediction method of the region class allows for the

region to normalize column prediction values in order to

predict which column/name cells will be active in subsequent

time steps.

Sleep The region sleep method, which is called periodically, cleans

and re-baselines the region. The sleep method is a

housekeeping method designed to destroy unused Hebbian

connections. This method greatly increases the efficiency of

the CLA.

Export/Import The export and import methods are used to store and recall cell

regions’ structures from the machine’s hard drive.

Calculate Metrics The calculate metrics method keeps track of the rate of

bursting throughout the cell region. Higher bursting rates

indicates that the cell region is not predicting

Region. The CLA can be isolated to a single cell region – in other words, the cell

region was designed with the ability to independently run the CLA. Each cell region can

interface with low level regions, high level regions and/or periphery (sensory) inputs. The

region holds a list of cell columns, and input and output parsers. The structure of the cell

region is illustrated in Figure 22. The region class contains a number of lists, variables and

www.manaraa.com

75

methods for dynamic generation of the region, prediction, commands and general

bookkeeping.

Figure 22. Cell Region structure and interface

As illustrated in Figure 22, each cell region contains an input and output parser. For

purposes of this thesis, ASCII (American Standard Code for Information Interchange)

encoding was chosen to transmit data between regions. Therefore, the input and output

parser recognized comma separated ASCII characters that represent the cell column to be

activated during that time step.

The input parser is an abstraction layer between the chosen communication method

and the cell columns in the region. The input parser interprets incoming inputs from

modalities or lower level regions. When new inputs are available to the region, the input

parser converts the ASCII string into column indices to become activated during that time

step. The output parser is designed to act in a similar matter to the input parser. The output

www.manaraa.com

76

parser accepts name cell activations and turns the name cell activations into output ASCII

text to feed forward to the next cell region.

Figure 23. Illustration of the function of both the input and output parser relative to the

CLA.

Name cell method CLA graphical example. The following section outlines the

graphical process of a new cell region during initial training. The purpose of this section is

to illustrate the CLA structures (cells, columns, region) interaction during training and

operation. Subsequent sections further illustrate how signals propagate up the cortical

hierarchy.

Initialized regions. An initialized cell region contains columns of cells. The cell

region’s data structure is analogous to the neocortical regions of cells that are aligned in a

columnar structure. Prior to any signals being applied to the cell region, the region contains

www.manaraa.com

77

no Hebbian connections between cells in the region – i.e. the region is a “new born” with

no bias or prior knowledge. The Figure 24 illustrates a new cell region:

Figure 24. Newly initialized cell region

Introduction of temporal signals. After a cell region has been initialized, the region

is ready to accept new inputs from its connected modality. The following figures illustrate

the first three time steps of signals introduced to the CLA.

Figure 25. First time step of temporal signal

www.manaraa.com

78

Figure 25 shows that the third column of cells accepting the first temporal signal to

the CLA. Because the cell region was not predicting any cells in column three to become

active, the CLA activates all cells in the column (shown in red).

Figure 26. Second time step of temporal signals

In Figure 26, the CLA receives the second temporal signal to the cell region. Again,

during this time step, the CLA did not predict any cells to become active, therefore the

entire column becomes active. Furthermore, because there were cells active in the previous

time step, the CLA picks two cells, one currently active and one previously active, and

creates a new Hebbian connection between the cells. By introducing this new Hebbian

connection, the CLA has now stored prior knowledge within the region for later prediction.

This process is repeated for the next time step, time step three (shown in Figure 27).

www.manaraa.com

79

Figure 27. Third time step of temporal signals

Strengthening of Hebbian connections. In this section, the cell region has accepted

multiple time steps creating many Hebbian connections. The following figures illustrate a

series of Hebbian connections being predicted and strengthened over three time steps.

Figure 28. Cell region with Hebbian connections

Figure 28 displays the cell region with many learned Hebbian connections between

cells. Each connection was created via temporal input signals. Because the region contains

prior knowledge of the modality it represents in the form of Hebbian connections, it is

possible for the cell region to actively predict what cells will become active in future time

www.manaraa.com

80

steps. Figure 29 displays a learned signal received by the cell region demonstrating prior

knowledge and reinforcing the Hebbian connections.

Figure 29. First signal of pattern

As illustrated in Figure 29, a signal arrives at the cell region causing the column of

cells to become active because none were predicted to become active. When each cell

becomes active, it sends an action potential to all connected cells (illustrated by the red

Hebbian connections). Cells that receive an action potential are placed in a predictive state

– i.e. neuron polarization. Cells that are placed into a predictive state allow the region to

identify the likelihood of what will become active in subsequent time steps.

Figure 30. Second signal of pattern

www.manaraa.com

81

Figure 30, illustrates the next time step of a previously observed pattern. Because

the column had a cell in a predictive state, only that predictive cell becomes active in this

time step. Again, the active cell sends an action potential to its connected cells.

Furthermore, because the Hebbian connection used to predict the activation of this column

was correct, the Hebbian connection is strengthened. The strengthening of the Hebbian

connection is analogous to the strengthening of connections between neurons in the

neocortex. The following figure illustrates the end of the learned pattern and strengthening

of correct Hebbian connections.

Figure 31. Last signal of pattern

Creating permanent Hebbian Connections. In the previous sections, the cell

region created new Hebbian connections to store a pattern and strengthened the learned

pattern, respectively. In this section, the cell region stores the pattern as permanent Hebbian

connections. This action represents the operation of the CLA developed for this thesis.

Figure 32 illustrates the cell region with strengthened Hebbian connections before the

temporal signal is applied to the cell region.

www.manaraa.com

82

Figure 32. Cell region with strengthened Hebbian connections

Figure 32, illustrates the cell region before the temporal signal is applied (observed

by darker, thicker inter-cell connections). In the following series of figures, the same signal

is applied to the cell region. However, in this example, the Hebbian connections have

reached a variable strength threshold that trigger the permanence of the Hebbian

connection. Furthermore, the cell region creates a name cell in order to represent the

permanent connection.

Figure 33. First signal of pattern

www.manaraa.com

83

As illustrated in Figure 33, the first signal from the connected modality is applied

to the cell region. Just like previous examples, the column becomes active and sends action

potentials to all connections.

Figure 34. Creation of first name cell

Unlike previous examples, the Hebbian connection that represents the signal

transition reaches a permanence threshold. Once the cell region reaches (???) the threshold,

it creates a name cell in order to represent the strong Hebbian connection. The name cell

will be used to represent the learned pattern and relay the signal to higher cell regions in

the hierarchical structure. Finally, Figure 35, the signal creates a second name cell in order

to represent the entire signal.

www.manaraa.com

84

Figure 35. Creation of second name cell

In this series of figures, the cortical learning algorithm has been illustrated – from

initialization to name cell characterization. In section 0, graphical examples are illustrated

to further characterize the CLA operation.

CLA graphical example. The CLA does not utilize name cells for passing

information up the cortical hierarchy. This section describes the method for passing

feedforward information up the cortical hierarchy using the same fundamental CLA

algorithm.

Figure 36. Initialization of CLA

www.manaraa.com

85

Initialized region. Region initialization of the CLA is identical to the original CLA

described in the previous example.

Introduction of temporal signals. As with the original CLA, after a cell region has

been initialized, the region is ready to accept new inputs from its connected modality. The

following figures illustrate the first three time steps of signals introduced to the CLA.

Figure 37. First time step of temporal signal

Figure 37, shows the third column of cells accepting the first temporal signal to the

CLA. Because the cell region was not predicting any cells in column three to become

active, the CLA activates all cells in the column (shown in red) and creates a feedforward

output representing the bursting column (all cells in the column become active). The

column “bursts” because it did not contain any cells in a predictive state – i.e. when a

column bursts, it is surprised it received an input.

www.manaraa.com

86

Figure 38. Second time step of temporal signals

In Figure 38, the CLA receives the second temporal signal to the cell region. Again,

during this time step, the CLA did not predict any cells to become active, therefore the

entire column becomes active. Furthermore, because there were cells active in the previous

time step, the CLA picks two cells, one currently active and one previously active, and

creates a new Hebbian connection between the cells and because the column bursts, the

CLA creates a feedforward output representing the bursting column. By introducing this

new Hebbian connection, the CLA has now stored prior knowledge within the region for

later prediction. This process is repeated for the next time step, time step three (shown in

Figure 39) as well as a new feedforward output due to the column bursting activation.

Figure 39. Third time step of temporal signals

www.manaraa.com

87

Strengthening of Hebbian connections. The following figures illustrate a series of

Hebbian connections being predicted and strengthened over, and outputs produced during

three time steps using the CLA.

Figure 40. Cell region with Hebbian connections

Figure 40 displays the cell region with many learned Hebbian connections between

cells. Each connection was created via temporal input signals. Because the region contains

prior knowledge of the modality it represents in the form of Hebbian connections, it is

possible for the cell region to actively predict what cells will become active in future time

steps. As illustrated in Figure 42, a signal arrives at the cell region causing the column of

cells to become active (or burst) because none were predicted to become active. When each

cell becomes active, it sends an action potential to all connected cells (illustrated by the red

Hebbian connections). Cells that receive an action potential are placed in a predictive state

– i.e., neuron polarization. Cells that are placed into a predictive state allow the region to

identify the likelihood of what will become active in subsequent time steps. Furthermore,

because the cell region “burst” we output that column for feedforward learning. As

illustrated in Figure 42, a signal arrives at the cell region causing the column of cells to

become active (or burst) because none were predicted to become active. When each cell

www.manaraa.com

88

becomes active, it sends an action potential to all connected cells (illustrated by the red

Hebbian connections). Cells that receive an action potential are placed in a predictive state

– i.e., neuron polarization. Cells that are placed into a predictive state allow the region to

identify the likelihood of what will become active in subsequent time steps. Furthermore,

because the cell region “burst” we output that column for feedforward learning.

Figure 41. Connection strengthened

Figure 41, displays a learned signal received by the cell region demonstrating prior

knowledge and reinforcing the Hebbian connections.

Figure 42. First signal of pattern

www.manaraa.com

89

As illustrated in Figure 42, a signal arrives at the cell region causing the column of

cells to become active (or burst) because none were predicted to become active. When each

cell becomes active, it sends an action potential to all connected cells (illustrated by the red

Hebbian connections). Cells that receive an action potential are placed in a predictive state

– i.e., neuron polarization. Cells that are placed into a predictive state allow the region to

identify the likelihood of what will become active in subsequent time steps. Furthermore,

because the cell region becomes active, we output that column for feedforward learning.

Figure 43. Second signal of pattern

Figure 43 illustrates the next time step of a previously observed pattern. Because

the column had a cell in a predictive state, only that predictive cell becomes active in this

time step. Again, the active cell sends an action potential to its connected cells.

Furthermore, because the Hebbian connection used to predict the activation of this column

was correct, the Hebbian connection is strengthened. The strengthening of the Hebbian

connection is analogous to the strengthening of connections between neurons in the

neocortex. Finally, because the region correctly predicted the column activation, it

www.manaraa.com

90

continues to apply the previous output, as displayed in Figure 43. Figure 44 illustrates the

end of the learned pattern and strengthening of correct Hebbain connections. Again,

because the region correctly predicted the column activation, it continues to apply the

previous output.

Figure 44. Last signal of pattern

Applications

Unsupervised pattern recognition. Our connected world contains an abundance

of information but it is often economically infeasible to manually classify the data for use

in supervised learning algorithms. Furthermore, data are often time sensitive – i.e. the

usefulness of collected data decays exponentially as time progresses - and manual

classification of data is very time consuming. Therefore, it is necessary to use unsupervised

learning algorithms to find underlying patterns in the data, in real time. Today, this is

accomplished via data mining techniques. Data mining is the computational process of

discovering patterns in large datasets and is used throughout the Big Data industry to

transform unlabeled data into comprehensible structures for further use [49]. Data mining

www.manaraa.com

91

algorithms have allowed researchers to understand and use Big Data to utilize unlabeled

data and take actions on the data. Using the CLA, it is possible to the build models of large

quantities of data in real time and taking actions immediately. The following paragraphs

provide two examples of applications of hierarchical structures that build models of Big

Data. One example comes from deep learning research between Stanford and Google [9],

and the other example is of Numenta’s Grok [10] (a commercially available hierarchical

CLA). These examples provide useful applications of hierarchical structures on real world

data – i.e., new unsupervised hierarchical algorithms similar to the CLA described in this

thesis.

The Stanford and Google collaboration, Building High-level Features Using Large

Scale Unsupervised Learning, was a large scale demonstration of deep learning and was

conducted using 15 million unlabeled frames from YouTube on a 16,000 core

supercomputer. The purpose of this experiment was to test DBNs (Deep Belief Networks)

on a large scale and simulate high-level class-specific neuron using unlabeled data. The

experiment was conducted to demonstrate that it is possible to train neurons to be selective

for high-level concepts using entirely unlabeled data and achieved a 70% relative

improvement over the state-of-the-art in 2012 [9] –The Stanford and Google team proved

that it is possible to use hierarchical structures to model completely unlabeled data.

Furthermore, this experiment proves that a structure, very similar to the hierarchical CLA

structure can build high-level models without any human interaction.

At Numenta, Inc., Jeff Hawkins and his team are using their open source CLA

algorithm, NuPIC [4], to build a commercial product named Grok [10]. Grok uses NuPIC

in order to detect anomalies in online servers. The early detection of issues in servers aid

www.manaraa.com

92

in building highly reliable networked systems at scale. Furthermore, the Grok system

performs complex pattern detection, automated modeling, and adaptive learning using the

open source NuPIC CLA. This system requires no more than an Amazon web server to run

the CLA and has proven very useful in real world applications [10] such as IT analytics,

rogue behavior detection, and geospatial tracking.

There are many opportunities and possible applications for cortical learning

algorithms and hierarchical structures (classified under deep architectures) in the pattern

recognition and machine learning fields. There are many recent examples of using this new

family of deep architectures in research and industry applications [50] [9] [10] [6] [7]. As

discussed in the Pattern Recognition Properties of an Intelligent System section 0, these

biologically inspired algorithms have the potential to build upon the state-of-the-art in

many classification applications including data fusion, non-stationary environments,

anomaly detection, etc. Furthermore, it is important to note that cortical learning algorithms

and other neurobiology inspired learning algorithms/hardware are currently in their infancy

(e.g. NuPIC [4], Human Brain Project [51], DARPA Synapse [52], etc.).

Motor control. The nervous system evolved around motor control and the

mammalian neocortex has a well-defined and well documented primary motor cortex.

Although the primary motor cortex is responsible for much of the motor control neural

activity in the brain recent research suggests that motor control signals propagate from

primary sensory regions (such as the visual cortex)of the brain as well as the primary motor

cortex [53] [11]. The cortical structure involved in motor control is also the same cortical

structure used in perception and prediction [3] [12]. The plentiful research surrounding

www.manaraa.com

93

biological motor control via the cortex will have very important applications in the future

of robotic control.

Classically, in order to control a robot, researchers and engineers must explicitly

map feed forward commands and feedback sensors to individual motor controllers, utilize

complex filtering techniques and develop data fusion algorithms. The design and tuning

process involved in a single dimensional control problem, depending on the application,

could take dozens of engineering hours to accomplish, which is very economically

expensive as well as taxing on the controls engineers. Because the CLA and deep learning

architectures (discussed in this thesis) are analogous to the structure of the low level regions

and primary motor cortex of the mammalian brain, it is plausible that the CLA could

enhance motor control in robotic and industrial applications and open the commercial

market to complex, high-dimensional robotic systems analogous to biological skeletal

systems.

Cortical Learning Algorithms

We now provide the pseudocode for unsupervised learning, supervised learning,

and classification. Unsupervised learning CLA is the baseline algorithm upon which the

supervised and classification algorithms are based. The basic components of the CLA are

illustrated as a UML diagram in Figure 45. Moreover, a graphical representation of the

algorithm is illustrated to further familiarize the reader with the CLA algorithms – the

graphical examples, although simple, should sufficiently demonstrate the functionality of

the algorithms.

UML diagram. In the UML diagram shown in Figure 45 illustrate the components

of the CLA and hierarchical structuring. The CLA is comprised of regions that hold

columns of cells. The Cell class outputs action potentials to a list of output cells and holds

www.manaraa.com

94

corresponding connection strengths. An action potential is generated via the Cell Activate()

function which calls a connected cell’s ReceiveInput() method.

Figure 45. UML diagram

Columns contain a list of cells. By calling the Column Activate() method, an input

from the region is processed; the Column Class then decides to “burst” if it contains no

predicted cells, otherwise it activates predicted cells.

The Region class maintains a list of predicted, active, and previously active cells

that the Cell and Column class can access during activation. The Region class also contains

a list of input regions and output regions. Input and output regions are used to pass

information processed by the Region class up or down a hierarchy. The Region Activate()

method is called when the region receives a new input. The Activate() function activates

the corresponding column in the region’s column list via the ActivateColumns() method.

www.manaraa.com

95

When Activate() returns, the region produces a new output that can be passed up the

hierarchy.

The Hierarchy class manages multiple regions and the structure of the regions. In

other words, the Hierarchy class is the manager of multiple CLAs – it manages starting and

stopping CLA threads, data input streams, and classification tasks. Furthermore, the

Hierarchy class monitors all CLA outputs which are used for supervised learning.

Unsupervised learning name cell CLA.

Algorithm pseudocode.

ActivateColumn(column C):

𝑃𝑝𝑟𝑒𝑣 is previously predicted cells

𝑐𝑖 is a cell contained in 𝐶 (i.e. 𝑐𝑖 ∈ 𝐶)

If {𝑐𝑖 ∈ 𝐶} ∄ 𝑃𝑝𝑟𝑒𝑣 do

∀{𝑐𝑖 ∈ 𝐶} ActivateCell(𝑐𝑖)

Else

 For ∀{𝑐𝑖 ∈ 𝑃𝑝𝑟𝑒𝑣} do

 ActivateCell(𝑐𝑖)

 End do

End do

ActivateCell(cell C):

𝐶𝑒𝑙𝑙 is the current cell being evaluated

𝐶𝑒𝑙𝑙𝑠𝑎𝑐𝑡𝑖𝑣𝑒 is the list of currently active cells in the parent region

𝑋 is the output connections contained by the cell

𝑥𝑖 is an output connection contained in 𝑋 (i.e. 𝑥𝑖 ∈ 𝑋)

𝑐𝑒𝑙𝑙𝑖 is the cell(s) connected to 𝑥𝑖

𝑃𝑐𝑢𝑟𝑟 is the list of currently predicted cells

𝑁𝑎𝑐𝑡𝑖𝑣𝑒 is the list of currently active name cells

For ∀{𝑥𝑖 ∈ 𝑋} do

If 𝐶𝑒𝑙𝑙 is a name cell do

 add: 𝐶𝑒𝑙𝑙 to 𝑁𝑎𝑐𝑡𝑖𝑣𝑒

Else

 add: 𝑐𝑒𝑙𝑙𝑖 to 𝑃𝑐𝑢𝑟𝑟

 add: 𝐶𝑒𝑙𝑙 to 𝐶𝑒𝑙𝑙𝑠𝑎𝑐𝑡𝑖𝑣𝑒

 End do

End do

www.manaraa.com

96

Unsupervised Learning CLA:

𝜜 is the input vector

𝛼𝑖 is the input {𝛼𝑖 ∈ 𝜜 } that is linked to column 𝑙𝑖

𝐿 is the list of columns contained in the region

𝑙𝑖 is column i contained in 𝐿 (i.e. 𝑙𝑖 ∈ 𝐿)

𝑃𝑝𝑟𝑒𝑣 is previously predicted cells

𝑃𝑐𝑢𝑟𝑟 is currently predicted cells

𝐶𝑒𝑙𝑙𝑠𝑝𝑟𝑒𝑣 is the list of previously active cells

𝐶𝑒𝑙𝑙𝑠𝑎𝑐𝑡𝑖𝑣𝑒 is the list of currently active cells

𝐶𝑒𝑙𝑙𝑠𝑟𝑒𝑔𝑖𝑜𝑛 is the list of all cells in the region

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the current time step of the region

𝑁 is the list of all name cells in a region

𝑁𝑎𝑐𝑡𝑖𝑣𝑒 is the list of name cells active during the current time step

𝛽 is the connection strength increment value

𝛾 is the connection permanence threshold

𝛼𝑖 = ∅

Parse 𝜜 into 𝛼𝑖where {𝛼𝑖 ∈ 𝜜 }

∀{𝛼𝑖} ActivateColumn(column 𝑙𝑖) corresponding to 𝛼𝑖

For ∀ {𝑐𝑒𝑙𝑙𝑠{𝑐𝑒𝑙𝑙𝑖 ∈ 𝐶𝑒𝑙𝑙𝑠𝑟𝑒𝑔𝑖𝑜𝑛}} do

 If 𝑐𝑒𝑙𝑙𝑖 ∈ 𝐶𝑒𝑙𝑙𝑠𝑝𝑟𝑒𝑣 do

 For ∀ {ℎ𝑒𝑏𝑏𝑖𝑎𝑛 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠{𝑥𝑖𝑗 ∈ 𝑐𝑒𝑙𝑙𝑠𝑖. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠}} do

 For ∀{𝑎𝑐𝑡𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠{𝑐𝑒𝑙𝑙𝑠𝑘 ∈ 𝐶𝑒𝑙𝑙𝑠𝑎𝑐𝑡𝑖𝑣𝑒}}

 If 𝑥𝑖𝑗 is connected to 𝑐𝑘 do

 If 𝑥𝑖𝑗 less than 𝛾 do

Increment Hebbian connection 𝑥𝑖𝑗 by 𝛽 (i.e. 𝑥𝑖𝑗+= 𝛽)

If 𝑥𝑖𝑗 greater than 𝛾 do

 Add: new name cell, 𝑛, to 𝑁

 Add: new Connection from 𝑐𝑒𝑙𝑙𝑖 to 𝑛

 Add: new Connection from 𝑐𝑒𝑙𝑙𝑘 to 𝑛

End do

End do

 Else

 Create Connection 𝑥𝑖(𝑗+1) connecting 𝑐𝑒𝑙𝑙𝑖 𝑡𝑜 𝑐𝑒𝑙𝑙𝑘 with initial strength 𝛽

 End do

 End do

 End do

 End do

End do

For ∀ {𝑐𝑒𝑙𝑙𝑠{𝑐𝑒𝑙𝑙𝑖 ∈ 𝐶𝑒𝑙𝑙𝑠𝑟𝑒𝑔𝑖𝑜𝑛}} do

 For ∀ {ℎ𝑒𝑏𝑏𝑖𝑎𝑛 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠{𝑥𝑖𝑗 ∈ 𝑐𝑒𝑙𝑙𝑖. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠}} do

 If 𝑥𝑖𝑗 less than 0 do

www.manaraa.com

97

 Destroy 𝑥𝑖𝑗

 else

 Decrement 𝑥𝑖𝑗: (i.e. 𝑥𝑖𝑗−=1)

 End do

 End do

End do

For ∀{𝑐𝑜𝑙𝑢𝑚𝑛𝑠 {𝑙𝑖 ∈ 𝐿}} do

 𝑙𝑖 predictive state = ∅

End do

For ∀{𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 {𝑝𝑖 ∈ 𝑃𝑐𝑢𝑟𝑟}} do

Increment 𝑝𝑖.parentColumn predictive state (i.e. 𝑝𝑖.parentColumn.predictiveState +=1)

End do

𝑃𝑝𝑟𝑒𝑣 = 𝑃𝑐𝑢𝑟𝑟

𝑃𝑐𝑢𝑟𝑟 = ∅

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 1

For ∀{𝑛𝑎𝑚𝑒 𝑐𝑒𝑙𝑙𝑠 {𝑛𝑖 ∈ 𝑁𝑎𝑐𝑡𝑖𝑣𝑒 }} do

convert 𝑛𝑖 ID to output string

End do

For ∀{𝑛𝑎𝑚𝑒𝑠 𝑐𝑒𝑙𝑙𝑠 𝑛𝑖 ∈ 𝑁} do

 If 𝑛𝑖 activity is <.2 do

 𝑛𝑖 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 0

 Else

 𝑛𝑖 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑛𝑖 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

2

 End do

End do

Graphical representation. Below is a graphical representation of the unsupervised

learning algorithm. The graphical representation of the algorithm displays four time steps

of a pre-trained cell region containing 9 cortical columns and 8 name cells.

The first time step, t0, displays a CLA cell region after it has been trained. As

illustrated in Figure 46, there are thin connections and thick connections between the cells

in each column. These connections represent Hebbian connections where the thin

connections are weak and the thick connections are strong. The stronger the Hebbian

connection between cells, the more often the connection has been observed by the CLA –

www.manaraa.com

98

i.e., patterns that activate subsequent columns. Furthermore, connections between cells

(blue) and name cells (green) represent a strong semantic meaning.

Figure 46. Graphical representation of an unsupervised CLA at t0

In the first time step, t1, the cell region receives a signal that activates column

number 4. Because there were no cells predicted to become active in column number 4, the

CLA orders the entire column of cells to send out signals to their connections – i.e. the

column “bursts.” In the graphical representation, the red cells and connection represent cell

activations and outgoing signals, respectively. This bursting action places the cell region

in a very active state where many of the active cell’s connections are predicting that they

will become active soon.

Figure 47. Graphical representation of an unsupervised CLA at t1

www.manaraa.com

99

In the next time step, t2, the cell region receives an input to the 6th column. Because

the 6th column contains a cell that was predicting it would become active, only that cell

becomes active. During the cell’s activation, it sends signals to the cells that it has Hebbian

connections to. As illustrated in Figure 48, there are fewer active and predicted cells

because the CLA made a correct prediction from prior observations in the form of a strong

Hebbian connection. Also, as seen in Figure 48, a cell in the 7th column is predicting it will

become active during the next time step. Finally, the 4th name cell has become active

because it has identified a prior pattern. This name cell activation can now be passed to the

next higher region in the cortical hierarchy.

Figure 48. Graphical representation of an unsupervised CLA at t2

The final time step of this graphical example validates the prediction made by the

CLA in t2. As illustrated in Figure 49, column 7 becomes active via lower input. Column

7’s activation triggers the predicted cell to become active and send outputs to connected

cells. Again, because this cell is connected to a name cell (name cell 5), and that name cell

www.manaraa.com

100

was predicted to receive an input from t2, the 5th name cell becomes active creating an

output from the cell region to be sent to above regions in the cortical hierarchy for further

processing.

Figure 49. Graphical representation of an unsupervised CLA at t3

Supervised learning name cell CLA.

Algorithm pseudocode.

Supervised Learning CLA

𝜜 is the input vector

𝛼𝑖 is the input {𝛼𝑖 ∈ 𝜜 } that is linked to column 𝑙𝑖

𝑆 is the input class

𝑇 is the list of class columns

𝑡𝑖 is the class column 𝑖 contained in 𝑇 (i.e. 𝑡𝑖 ∈ 𝑇)

𝑂 is the class output

𝐿 is the list of columns contained in the region

𝑙𝑖 is column i contained in 𝐿 (i.e. 𝑙𝑖 ∈ 𝐿)

𝑃𝑝𝑟𝑒𝑣 is previously predicted cells

𝑃𝑐𝑢𝑟𝑟 is currently predicted cells

𝐶𝑒𝑙𝑙𝑠𝑝𝑟𝑒𝑣 is the list of previously active cells

𝐶𝑒𝑙𝑙𝑠𝑎𝑐𝑡𝑖𝑣𝑒 is the list of currently active cells

𝐶𝑒𝑙𝑙𝑠𝑟𝑒𝑔𝑖𝑜𝑛 is the list of all cells in the region

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the current time step of the region

𝑁 is the list of all name cells in a region

www.manaraa.com

101

𝑁𝑎𝑐𝑡𝑖𝑣𝑒 is the list of name cells active during the current time step

𝛽 is the connection strength increment value

𝛾 is the connection permanence threshold

𝛼𝑖 = ∅

Parse 𝜜 into 𝛼𝑖where {𝛼𝑖 ∈ 𝜜 }

If 𝑆 contains corresponding class column 𝑡𝑠 ∈ 𝑇 do

 For ∀{𝑛𝑎𝑚𝑒 𝑐𝑒𝑙𝑙𝑠 {𝑛𝑖 ∈ 𝑁𝑎𝑐𝑡𝑖𝑣𝑒 }} do

 Add: 𝑛𝑖 to 𝑡𝑠

 End do

Else

 Add: new class column 𝑡𝑠 to 𝑇

End do

∀{𝛼𝑖} ActivateColumn() column 𝑙𝑖 corresponding to 𝛼𝑖

For ∀ {𝑐𝑒𝑙𝑙𝑠{𝑐𝑒𝑙𝑙𝑖 ∈ 𝐶𝑒𝑙𝑙𝑠𝑟𝑒𝑔𝑖𝑜𝑛}} do

 If 𝑐𝑒𝑙𝑙𝑖 ∈ 𝐶𝑒𝑙𝑙𝑠𝑝𝑟𝑒𝑣 do

 For ∀ {ℎ𝑒𝑏𝑏𝑖𝑎𝑛 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠{𝑥𝑖𝑗 ∈ 𝑐𝑒𝑙𝑙𝑖 . 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠}} do

 For ∀{𝑎𝑐𝑡𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠{𝑐𝑒𝑙𝑙𝑘 ∈ 𝐶𝑒𝑙𝑙𝑠𝑎𝑐𝑡𝑖𝑣𝑒}}

 If 𝑥𝑖𝑗 is connected to 𝑐𝑒𝑙𝑙𝑘 do

 If 𝑥𝑖𝑗 less than 𝛾 do

Increment Hebbian connection 𝑥𝑖𝑗 by 𝛽 (i.e. 𝑥𝑖𝑗+= 𝛽)

If 𝑥𝑖𝑗 greater than 𝛾 do

 Add: new name cell, 𝑛, to 𝑁

 Add: new Connection from 𝑐𝑒𝑙𝑙𝑖 to 𝑛

 Add: new Connection from 𝑐𝑒𝑙𝑙𝑘 to 𝑛

End do

End do

 Else

 Create Connection 𝑥𝑖(𝑗+1) connecting 𝑐𝑒𝑙𝑙𝑖 𝑡𝑜 𝑐𝑒𝑙𝑙𝑘 with initial strength 𝛽

 End do

 End do

 End do

 End do

End do

For ∀ {𝑐𝑒𝑙𝑙𝑠{𝑐𝑒𝑙𝑙𝑖 ∈ 𝐶𝑒𝑙𝑙𝑟𝑒𝑔𝑖𝑜𝑛}} do

 For ∀ {ℎ𝑒𝑏𝑏𝑖𝑎𝑛 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠{𝑥𝑖𝑗 ∈ 𝑐𝑒𝑙𝑙𝑖. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠}} do

 If 𝑥𝑖𝑗 less than 0 do

 Destroy 𝑥𝑖𝑗

 else

 Decrement 𝑥𝑖𝑗: (i.e. 𝑥𝑖𝑗−=1)

 End do

 End do

End do

www.manaraa.com

102

For ∀{𝑐𝑜𝑙𝑢𝑚𝑛𝑠 {𝑙𝑖 ∈ 𝐿}} do

 𝑙𝑖 predictive state = ∅

End do

For ∀{𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 {𝑝𝑖 ∈ 𝑃𝑐𝑢𝑟𝑟}} do

Increment 𝑝𝑖.parentColumn predictive state

End do

𝑃𝑝𝑟𝑒𝑣 = 𝑃𝑐𝑢𝑟𝑟

𝑃𝑐𝑢𝑟𝑟 = ∅

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 1

For ∀{𝑛𝑎𝑚𝑒 𝑐𝑒𝑙𝑙𝑠 {𝑛𝑖 ∈ 𝑁𝑎𝑐𝑡𝑖𝑣𝑒 }} do

convert 𝑛𝑖 ID to output string

End do

For ∀{𝑐𝑙𝑎𝑠𝑠 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 {𝑡𝑖 ∈ 𝑇}} do

 𝑐𝑙𝑎𝑠𝑠 𝑡𝑜𝑡𝑎𝑙𝒊 = ∑ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑛𝑎𝑚𝑒 𝑐𝑒𝑙𝑙𝑠 ∈ 𝑡𝑖

End do

𝑂 = index of 𝑀𝑎𝑥{𝑐𝑙𝑎𝑠𝑠 𝑡𝑜𝑡𝑎𝑙}
For ∀{𝑛𝑎𝑚𝑒𝑠 𝑐𝑒𝑙𝑙𝑠 𝑛𝑖 ∈ 𝑁} do

 If 𝑛𝑖 activity is <.2 do

 𝑛𝑖 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 0

 Else

 𝑛𝑖 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑛𝑖 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

2

 End do

End do

Graphical representation. Below is a graphical representation of the supervised

learning algorithm. The graphical representation of the algorithm displays four time steps

of a pre-trained cell region containing 9 cortical columns and 8 name cells. The intent of

this graphical example is to demonstrate to the reader that the CLA creates a probabilistic

analysis of the incoming, online data stream and classifies the pattern using prior

knowledge during initial training.

Figure 50 represents a cell region that was trained using a supervised CLA with

three classes. As seen in the figure, the structure is very similar to the unsupervised CLA

graphical example. The primary difference between the supervised and unsupervised CLA

is the grouping of name cells into classes.

www.manaraa.com

103

Figure 50. Graphical representation of a supervised CLA at t0

The same pattern is introduced to the supervised learning algorithm as was

introduced in the unsupervised graphical representation of the unsupervised CLA. The

same pattern was picked to show the differences between unsupervised and supervised

learning after training.

At time step t1, the supervised CLA uses the same bursting method as the

unsupervised CLA because the column was not predicted to fire – casing all cells in the

column to become active and send outputs to their respective Hebbian connections. The

only difference between the unsupervised and supervised CLA is that the name cells are

grouped into known classes. As seen in Figure 51, the CLA identifies the pattern as part of

either class 1 or class 2. Because this is the first time step, the CLA must wait to observe

the next temporal step in the pattern before it can definitively identify the pattern.

At time step t2, the CLA has received a second temporal piece of the unknown

pattern. As predicted, the cell in column 6 becomes active sending its Hebbian outputs to

connected cells.

www.manaraa.com

104

Figure 51. Graphical representation of a supervised CLA at t1

Figure 52. Graphical representation of a supervised CLA at t2

As shown in Figure 52, the predicted name cell in the Class 2 group becomes active

due to column 6 input. Because that name cell is the only name cell active, it is highly

likely that the pattern belongs to Class 2, therefore, the supervised CLA outputs the class

label, Class 2.

www.manaraa.com

105

Although during time step t2 the supervised CLA outputted Class 2, the pattern has

not ended. In time step t3, the final temporal piece of the pattern is introduced to the

supervised CLA. In this step, the cell region correctly holds the output of the CLA at Class

2 (seen in Figure 53).

Figure 53. Graphical representation of a supervised CLA at t3

As illustrated above, Class 2 is identified as the current temporal pattern observed

by the supervised CLA. It’s worth noting that Class 2 was identified two time steps in a

row. This example correctly illustrates the concept of invariant representations – where

lower signals change faster than the output of the region. The invariant representation of

Class 2 can be reported to a higher level region in a cortical hierarchy or simply outputted

as the class label for classification.

Model CLA. The CLA uses the same cortical learning algorithm as the previously

described algorithms without the use of name cells for feedforward outputs. Instead, this

www.manaraa.com

106

model of the CLA utilizes all column bursting activation as feedforward output of the cell

region.

Algorithm pseudocode.

Model Unsupervised Learning CLA (single time step):

𝜜 is the input vector

𝛼𝑖 is the input {𝛼𝑖 ∈ 𝜜 } that is linked to column 𝑙𝑖

𝐿 is the list of columns contained in the region

𝑙𝑖 is column i contained in 𝐿 (i.e. 𝑙𝑖 ∈ 𝐿)

𝑃𝑝𝑟𝑒𝑣 is previously predicted cells

𝑃𝑐𝑢𝑟𝑟 is currently predicted cells

𝐶𝑒𝑙𝑙𝑠𝑝𝑟𝑒𝑣 is the list of previously active cells

𝐶𝑒𝑙𝑙𝑠𝑎𝑐𝑡𝑖𝑣𝑒 is the list of currently active cells

𝐶𝑒𝑙𝑙𝑠𝑟𝑒𝑔𝑖𝑜𝑛 is the list of all cells in the region

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the current time step of the region

𝛽 is the connection strength increment value

𝛼𝑖 = ∅

Parse 𝜜 into 𝛼𝑖where {𝛼𝑖 ∈ 𝜜 }

∀{𝛼𝑖} ActivateColumn() column 𝑙𝑖 corresponding to 𝛼𝑖

For ∀ {𝑐𝑒𝑙𝑙𝑠{𝑐𝑒𝑙𝑙𝑖 ∈ 𝐶𝑒𝑙𝑙𝑠𝑟𝑒𝑔𝑖𝑜𝑛}} do

 If 𝑐𝑒𝑙𝑙𝑖 ∈ 𝐶𝑒𝑙𝑙𝑝𝑟𝑒𝑣 do

 For ∀ {ℎ𝑒𝑏𝑏𝑖𝑎𝑛 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠{𝑥𝑖𝑗 ∈ 𝑐𝑒𝑙𝑙𝑖 . 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠}} do

 For ∀{𝑎𝑐𝑡𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠{𝑐𝑒𝑙𝑙𝑘 ∈ 𝐶𝑒𝑙𝑙𝑠𝑎𝑐𝑡𝑖𝑣𝑒}}

 If 𝑥𝑖𝑗 is connected to 𝑐𝑒𝑙𝑙𝑘 do

 If 𝑥𝑖𝑗 less than 𝛾 do

Increment Hebbian connection 𝑥𝑖𝑗 by 𝛽 (i.e. 𝑥𝑖𝑗+= 𝛽)

End do

 Else

 Create Connection 𝑥𝑖(𝑗+1) connecting 𝑐𝑒𝑙𝑙𝑖 𝑡𝑜 𝑐𝑒𝑙𝑙𝑘 with initial strength 𝛽

 End do

 End do

 End do

 End do

End do

For ∀ {𝑐𝑒𝑙𝑙𝑠{𝑐𝑒𝑙𝑙𝑖 ∈ 𝐶𝑒𝑙𝑙𝑠𝑟𝑒𝑔𝑖𝑜𝑛}} do

 For ∀ {ℎ𝑒𝑏𝑏𝑖𝑎𝑛 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠{𝑥𝑖𝑗 ∈ 𝑐𝑒𝑙𝑙𝑖. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠}} do

 If 𝑥𝑖𝑗 less than 0 do

 Destroy 𝑥𝑖𝑗

 else

www.manaraa.com

107

 Decrement 𝑥𝑖𝑗: (i.e. 𝑥𝑖𝑗−=1)

 End do

 End do

End do

For ∀{𝑐𝑜𝑙𝑢𝑚𝑛𝑠 {𝑙𝑖 ∈ 𝐿}} do

 𝑙𝑖 predictive state = ∅

End do

For ∀{𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 {𝑝𝑖 ∈ 𝑃𝑐𝑢𝑟𝑟}} do

Increment 𝑝𝑖.parentColumn predictive state

End do

𝑃𝑝𝑟𝑒𝑣 = 𝑃𝑐𝑢𝑟𝑟

𝑃𝑐𝑢𝑟𝑟 = ∅

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 1

For ∀{𝑐𝑜𝑙𝑢𝑚𝑛𝑠 {𝑙𝑖 ∈ 𝐿}} do

 If 𝑙𝑖 is bursting do

 Convert 𝑙𝑖 ID to output string

 End do

End do

Graphical representation. Below is a graphical representation of the alternate

cortical learning algorithm. The graphical representation of the algorithm displays four

time steps of a pre-trained cell region containing 9 cortical columns. The intent of this

graphical example is to demonstrate to the reader that the CLA creates a probabilistic

analysis of the incoming, online data stream and classifies the pattern using prior

knowledge from initial training.

The figure below, Figure 54, illustrates a pre-trained cell region at t0.

Figure 54. Graphical representation of alternate CLA at t0

www.manaraa.com

108

In Figure 55, time step t1, the fourth column in the region becomes active. Because

no cells in the column were predicted to become active during t1, the entire column of cells

burst which, subsequently, causes the column to create a feedforward output signal for use

in higher regions in the hierarchy.

Figure 55. Graphical representation of alternate CLA at t1

In Figure 56, time step t2, the sixth column in the cell region becomes active.

Because the sixth column contained a predicted cell, the column does not burst – thus, the

fourth column output remains high.

Figure 56. Graphical representation of alternate CLA at t2

www.manaraa.com

109

In Figure 57, time step t3, the seventh column in the cell region becomes active.

Similarly to t2, because the seventh column contained a predicted cell, the column does not

burst – thus, the fourth column output remains high.

Figure 57. Graphical representation of alternate CLA at t3

In Figure 58, time step t4, the first column fires but does not contain any predicted

cells. Therefore, the column bursts and activates a feedforward output representing column

number one. Again, this output is send to higher regions in the hierarchy.

Figure 58. Graphical representation of alternate CLA at t4

www.manaraa.com

110

Hierarchical classification.

Training and classification pseudocode.

Training(class 𝑆):

𝑂 is the list of all CLA outputs contained in the hierarchy

𝑜𝑖 is an active CLA output contained in 𝑂 (i.e. 𝑜𝑖 ∈ 𝑂)

𝑐𝑜𝑢𝑛𝑡𝑖 is the list linked to 𝑜𝑖

𝑐𝑖𝑗 is a list of class counts corresponding to each output in 𝑐𝑜𝑢𝑛𝑡𝑖 (i.e. 𝑐𝑜𝑢𝑛𝑡𝑖𝑗 ∈ 𝑐𝑜𝑢𝑛𝑡𝑖)

𝑆 is the current class introduced the hierarchy

For ∀{𝑎𝑐𝑡𝑖𝑣𝑒 𝑜𝑢𝑡𝑝𝑢𝑡{𝑜𝑖 ∈ 𝑂}} do

For ∀ {𝑐𝑙𝑎𝑠𝑠 𝑐𝑜𝑢𝑛𝑡{𝑐𝑜𝑢𝑛𝑡𝑖𝑗 ∈ 𝑐𝑜𝑢𝑛𝑡𝑖}} do

If S corresponds to 𝑐𝑜𝑢𝑛𝑡𝑖𝑗 do

 Increment 𝑐𝑜𝑢𝑛𝑡𝑖𝑗 (i.e. 𝑐𝑜𝑢𝑛𝑡𝑖𝑗+= 1)

End do

End do

End do

Classification:

𝑂 is the list of all CLA outputs contained in the hierarchy

𝑜𝑖 is an active CLA output contained in 𝑂 (i.e. 𝑜𝑖 ∈ 𝑂)

𝑐𝑜𝑢𝑛𝑡𝑖 is the list linked to 𝑜𝑖

𝑐𝑜𝑢𝑛𝑡𝑖𝑗 is a list of class counts corresponding to each output in 𝑐𝑖 (i.e. 𝑐𝑖𝑗 ∈ 𝑐𝑖)

𝑚𝑗 is the total value corresponding to each class

𝐶𝑙𝑎𝑠𝑠 is the class output as integer

For ∀{𝑎𝑐𝑡𝑖𝑣𝑒 𝑜𝑢𝑡𝑝𝑢𝑡{𝑜𝑖 ∈ 𝑂}} do

For ∀ {𝑐𝑙𝑎𝑠𝑠 𝑐𝑜𝑢𝑛𝑡{𝑐𝑜𝑢𝑛𝑡𝑖𝑗 ∈ 𝑐𝑜𝑢𝑛𝑡𝑖}} do

 𝑚𝑗+= 𝑐𝑜𝑢𝑛𝑡𝑖𝑗

 End do

End do

Return 𝐶𝑙𝑎𝑠𝑠 = 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑀𝑎𝑥{𝑚𝑗} (i.e. return class index)

Graphical representation. Classification via a hierarchy of CLAs is achieved

utilizing output signals from the various CLAs contained in the hierarchy. In other words,

when a feedforward output is activated, the output is correlated to the current class being

www.manaraa.com

111

introduced. In the following section, a graphical example describes how both training and

classification are achieved via the hierarchy.

In this example, classifier training of a linear hierarchy of initialized alternate CLA

models is executed over the course of ten discrete time steps. The classification example

contains two classes. The purpose of this graphical example is to 1) illustrate how signals

propagate up the linear hierarchy 2) demonstrate how output signals are correlated to class

input during training and 3) demonstrate invariance propagates throughout a hierarchy of

CLAs.

In, Figure 59, time step t0, the initialized alternate CLAs begin their training

process. The classifier table contains eight columns, which represent the eight columns of

cells in the example. Both layer 1 and layer 2 (labeled L1 and L2, respectively) contain

rows for class 1 and class 2. When a class is introduced to the classifier during training,

and a column output from L1 and/or L2 are active, the training algorithm increments the

column corresponding to the class.

Figure 59. Initialized linear hierarchy of alternate CLAs

www.manaraa.com

112

In Figure 60, time step t1, the first input is applied to the linear hierarchy while class

1 input applied to the classifier for training. The signal arrives at the lowest layer, L0, which

is analogous to a primary sensory region in the brain. As illustrated in previous examples,

because the input was not predicted by column 4, the column enters a bursting state.

Therefore, all cells become active in the column and send signals to all cells connected

placing the connected cells in a predictive state. Furthermore, as displayed in Figure 60,

because the column burst, it creates an output from column 4 to layer 1. The signal then

propagates to layer 2 via bursting column in L1. Finally, because class 1 is introduced to

the classifier for training and L1 and L2 contain an output from column 4, the classifier

increments class 1 (rows C1 in the classifier table), column 4 for each layer.

During time step t2, time step t2, illustrated in Figure 61, the second input to the

primary sensory region (layer 0) is applied to column 5. Column 5 contained multiple

predicted cells in t1, therefore the column does not enter a bursting state – instead, only the

predicted cells in the column become active, and send signals to their connected cells.

Furthermore, because the column did not burst, no feedforward signal is generated by layer

0 – therefore, the previous output remains active and the regions above (layer 1 and 2) do

not need to process signals during this time step. Finally, similarly to t1, because class 1 is

introduced to the classifier for training and L1 and L2 contain an output from column 4,

the classifier increments class 1 (rows C1 in the classifier table), column 4 for each layer.

www.manaraa.com

113

Figure 60. Initialized linear hierarchy of alternate CLAs at t1

Figure 61. Initialized linear hierarchy of alternate CLAs at t2

During time step t3, illustrated in Figure 62, the third input to the primary sensory

region (layer 0) is applied to column 3. Column 3 contained a predicted cell in t2, therefore

the column does not enter a bursting state - only the predicted cells in the column become

active and send signals to their connected cells. Again, because the column did not burst,

no feedforward signal is generated by layer 0 – therefore, the regions above do not need to

process signals during this time step. Finally, the classifier increments class 1 (rows C1 in

the classifier table), column 4 for each layer.

www.manaraa.com

114

Figure 62. Initialized linear hierarchy of alternate CLAs at t3

During time step t4, illustrated in Figure 63, the primary sensory region receives an

input at column 5 – which was not predicted to become active. Therefore, the column bursts

creating an output signal at column 5. The column 5 feedforward output to layer 1 was

predicted and, therefore, the layer 1 region does not enter a burst mode allowing the output

to layer 1 to remain invariant. As illustrated by the “Invariance” column to the left of the

linear hierarchy, the lower layers are changing quickly while the upper layer is not

changing (or remaining invariant). Again, the classifier increments class 1 (rows C1 in the

classifier table), column 4 for each layer.

Figure 63. Initialized linear hierarchy of alternate CLAs at t4

www.manaraa.com

115

Time step t5, illustrated in Figure 64, is similar to time steps t2 and t3. Again, the

classifier increments class 1 (rows C1 in the classifier table), column 4 for each layer while

the layer 0 region handles the incoming signal.

Figure 64. Initialized linear hierarchy of alternate CLAs at t5

During time step t6, illustrated in Figure 65, is similar to time step t4 where the layer

0 region burst and is handled by layer 1. Again, the classifier increments class 1 (rows C1

in the classifier table), column 4 for each layer.

Figure 65. Initialized linear hierarchy of alternate CLAs at t6

www.manaraa.com

116

Time step t7, illustrated in Figure 66, is similar to time step t5. Again, the classifier

increments class 1 (rows C1 in the classifier table), column 4 for each layer while the layer

0 region handles the incoming signal.

Time step t8, illustrated in Figure 67, a new signal is applied to column 5 of the

primary sensory region, L0. Because no cells were predicted in L0, the column bursts and

a signal is passed to L1 via feedforward activation. Similarly to the signal arriving at L0,

L1 contained no predicted cells causing column 5 to burst and a signal is passed to L2 via

feedforward activation. Finally, L2 receives the feedforward signal at column 5 but

contains a predicted cell – therefore, L2 does not burst and maintains its feedforward output

at column 4. The new output from L1 is captured and the classifier increments class 1,

column 5 for L1 and class 1, column 4 for L2.

Figure 66. Initialized linear hierarchy of alternate CLAs at t7

www.manaraa.com

117

Figure 67. Initialized linear hierarchy of alternate CLAs at t8

In time step t9, illustrated in Figure 68, L0 receives a predicted input a column 5.

Figure 68. Initialized linear hierarchy of alternate CLAs at t9

www.manaraa.com

118

Figure 69. Initialized linear hierarchy of alternate CLAs at t10

The final time step in this example, t10 (illustrated in Figure 69), a new class is

applied to the linear hierarchy, class 2. Furthermore, a new signal is applied to the linear

hierarchy at column 7. L0, L1, and L2 have not predicted column 7 to become active, so

each layer enters a burst state propagating the signal up the linear hierarchy via feedforward

outputs. Finally, the new output from L1 and L2 is captured by the classifier and it

increments class 2, column 7 for L1 and L2.

Experiments

To test the developed CLA, a set of experiments were devised to verify the CLA

algorithm’s design and evaluate the CLA’s performance. Preliminary testing of the CLA

was conducted on a set of synthetic test signals built dynamically by a MATLAB script.

The synthetic datasets are designed to test all of the CLA’s principles and behaviors as well

as evaluate the CLA.

www.manaraa.com

119

Figure 70. CLA validation synthetic dataset example

Synthetic test signals. To properly test and debug the described system, a dynamic,

synthetic dataset that can produce a wide variety of signals is designed. The developed

CLA accepts abstracted signals extracted from data distributions. These data distributions

can represent any number of signals ranging from auditory signals represented in the

frequency domain to temporal stock price data. The CLA is specifically designed to operate

in the time domain. Therefore, it is essential that we emulate a sensor changing over time.

The CLA semantically identifies patterns that occur over time.

www.manaraa.com

120

Figure 71. Example of CLA hierarchy classification synthetic dataset

CLA validation synthetic dataset. The CLA validation synthetic datasets represent

patterns that occur over time with uniform random noise. The purpose of this synthetic

dataset generator is to test and validate the functionality of a single Cell region. For each

dataset, a known number of patterns, with a known temporal length, are devised. For

example, a single dimensional dataset with 60 temporal time steps may contain 2 individual

patterns that randomly occur over time. Each pattern may have 5 sequential time steps.

Figure 70 displays how such a pattern is introduced to the CLA. Note: Pattern 1 is 1, 2, 3,

4, 5 and Pattern 2 is 10, 9, 8, 7, 6 with time progressing from top to bottom.

It is possible to corrupt the signal with varying amounts of noise. The synthetic

dataset has been devised to introduce noise in two ways: inter-pattern noise, and intra-

pattern noise. In Inter-pattern noise the dataset includes randomly inserted signals (with

equal probability) between predefined signals.

The inter-pattern noise provides two distinct functions. It allows for the predefined

signals to be temporally spaced, and simulates complete randomness that contains no

important information. Therefore, we maintain a high level of inter-pattern noise in order

www.manaraa.com

121

to test if the CLA can make sense of and identify the predefined patterns, and that the CLA

is not memorizing noise that contains no useful information.

The intra-pattern noise tests the robustness of the CLA. For example, if the

predefined patterns are of length 5, we can randomly change one of the 5 time steps in the

pattern to corrupt the signal. The significance of intra-pattern noise is demonstrated in the

following sections.

CLA hierarchy classification synthetic dataset. The purpose of the CLA hierarchy

classification synthetic dataset is to evaluate classification performance on an arbitrary

multimodal signal containing an arbitrary number of classes. Multimodal, in the context of

this thesis and neurobiology, refers to number of sensory input streams (i.e. a modality in

neurobiology can refer to sensory stream such as visual, auditory, somatic, etc.). Again,

the synthetic dataset is a time series - each modality containing a single vector of discrete

time steps. For example, if we generate a four modality signal, the CLA hierarchy

classification synthetic dataset generator creates four independent, single dimensional

outputs correlated with respect to time. Figure 71, shows an example of a multimodal CLA

hierarchy classification synthetic dataset containing four modalities.

Figure 72. Illustration of varying signal bias

www.manaraa.com

122

Each class contains at least 1 random sinusoidal signal per modality. Furthermore,

the signal bias of the signal can be changed arbitrarily. When the signal bias is high, the

patterns are linearly separable – i.e., trivial to classify. By varying the bias, the

classification problem becomes much harder. Figure 72 illustrates the arbitrary bias

variable of the CLA hierarchy classification synthetic dataset on the same scale. Therefore,

when there is no bias, the only differentiating information in the signal is the sinusoidal

signal.

CLA testing. This section outlines the methods and motivation behind the various

tests performed to demonstrate the developed CLA core functionality. Core functionality

of the CLA include temporal pattern recognition, spatial pattern recognition, and Hebbian

connection construction and manipulation.

Single dimensional functionality. The CLA was designed to include both single

dimensional discrete inputs (i.e., single column activation per time step) and multi-

dimensional discrete inputs (i.e., multiple column activation per time step). During the

single dimensional functionality testing, the CLA was subjected to the basic synthetic test

signals described in previously in this chapter. The purpose of these tests is to validate the

performance of the CLA when synthetic data containing single and multiple patterns are

introduced – i.e., the single dimensional functionality tested how Hebbian connections are

constructed and manipulated when one column is active per discrete time step.

Multi-dimensional functionality. The multi-dimensional functionality test is

conducted to validate the spatial performance of the CLA when multiple columns are

activated per discrete time step. Expanding on the results of the single dimensional

functionality testing, the structure and performance of the CLA are assessed based on how

www.manaraa.com

123

Hebbian connections are constructed and manipulated when multiple columns are active

per discrete time step.

Name cell generation. Name cells are generated when a Cell region identifies a

learned pattern. The purpose of the name cell generation experiment is to demonstrate the

name cells’ significance to invariant representations and name cell generation based on

learned Hebbian connections.

CLA functionality. The original CLA algorithm developed for this thesis utilizes

name cells for classification and feedforward outputs. The final CLA developed for this

thesis does not utilize name cells in order to pass feedforward information up the cortical

hierarchy – it simply passes bursting columns up a cortical hierarchy to form invariant

representations. Therefore, this model is tested in a similar fashion as both the single and

multi-dimensional functionality. The output of the CLA model are recorded and validated

by recording when bursting occurred and recording the output of the alternate CLA. If the

bursting and output are correlated with time, the test passed.

Hierarchical structuring functionality. The hierarchical structuring experiments

are conducted using the alternate CLA model. The Cell regions are arranged in an

ascending, hierarchical structure. The purpose of this experiment is to prove that highly

variant, quickly changing signals can be characterized and passed to a higher region. As

the signals are passed from lower to high level regions, the signals become increasingly

invariant signals that can be used for classification and state estimation. Figure 73

represents two possible embodiments of Cell region hierarchical structures studied in this

thesis.

www.manaraa.com

124

Figure 73. (a) Linear hierarchical structure (b) Pyramidal structure.

As illustrated in Figure 73the number of columns in each region are matched 1:1

as signals propegate up the hierarchy – i.e. all regions in the heirarchy contain the same

number of columns as the region(s) below. Furthermore, as illustrated in Figure 73b, the

pyrimidal structure allows lower region’s output signals to connect via Hebbian

connections – thus, drawing semantic connections across modailties. In other words, in

Figure 73b, each lower level cell region represents a single modality – the region above

accepts both cell regions outputs. By accepting both regions’ outputs, the higher region can

semantically create Hebbian connections between different modalities. The fundimental

heirarchical functionality is validated by recording the inputs and outputs of each region

contained in the heirarchy. Furthermore, invariance is recorded by counting how many time

steps each region’s output remained active.

Sparsity. The effect of CLA sparsity were tested by measuring the classification

performance of a linear hierarchy of alternate CLA models on a linearly separable synthetic

dataset. All variables are held constant besides the number of available columns – e.g., the

www.manaraa.com

125

same signal is tested on a hierarchy of regions containing 10 columns, 20 columns, 40

columns, 80 columns, etc. with only one column active during each time step. The

performance is recorded and evaluated based on number of columns vs classification

performance.

Convergence. Convergence, as it relates to the CLA, occurs when the CLA reaches

a nominal burst rate. The burst rate of the CLA is the number of columns that “burst” and

send their output to cell regions up the hierarchy. When the CLA burst rate is high, the

CLA has poor prior knowledge of the signal being introduced to the CLA. As the CLA

learns, the burst rate decreases and reaches an equilibrium – this is how we identify whether

or not the CLA has converged. As expected, when novel signals are introduced to a CLA

that has already converged, we see spikes in the burst rate of the CLA indicating either

anomalies in the data or new classes being introduced.

Real data. One of the motivations of this thesis is to identify how the CLA can be

utilized for motor control. In all controls applications, the state of the system must be

identified for control of the system. For example, control of a helicopter is different during

hover in ground effect as compared to forward flight at max speeds – for each state (hover

and forward flight) control system gains and control signals differ. Traditionally, states of

a system are identified and programmed by engineers and designers and is a very time

consuming process. However, if the CLA can differentiate between multi-modal signals

and identify system states in an unsupervised manner, it may be possible to utilize those

same signals used for identifying system state to control the system.

www.manaraa.com

126

Figure 74. Example flight test data

In this experiment, we gathered flight test data from a fully automated flight

performed by a PIXHAWK autopilot (example of dataset is illustrated in Figure 74). The

data is then downloaded, and classified into the following states: Ground, Takeoff, Hover,

Cruise, and Landing. Because the flight test data is a time series, the states are active during

each maneuver up until transition to a subsequent state. Once the data is classified, the data

is post processed by the CLA and the classification performance is recorded.

www.manaraa.com

127

Figure 75. Feedback to ground station computer

Figure 76. Quadrotor during automated flight

www.manaraa.com

128

Results

Functionality

Single pattern.

Figure 77. Single pattern results

Figure 77 illustrates the CLA learning a single pattern. In this experiment, the CLA

was introduced to a signal containing a single pattern. The pattern was introduced 1 out of

every 5 times steps. When introduced, the entire pattern was applied to the CLA for 20

time steps. The region contained 100 columns and the pattern activated columns 1 through

20 sequentially for 20 time steps. Figure 77 a displays the CLA structure after 1 epoch of

1000 time steps. As seen in Figure 77a, the structure contains many Hebbian connections

between the nodes of the structure. Furthermore, a string of very strong connections are

apparent in Figure 77a. These very strong connections represent the single pattern

introduced to the CLA. In Figure 77b, using Gephi, weak connections were filtered out

revealing the single pattern structure within the CLA. Figure 77b shows nodes 1 through

20 with strong Hebbian connections – these Hebbian connections perfectly correlate with

www.manaraa.com

129

the pattern introduced to the CLA during this experiment. This experiment has proven to

be predictable and repeatable and, thus, validates the CLA’s ability to create Hebbian

connections using time series data.

Spatial pattern.

Figure 78. Partial pattern results

In Figure 78, a pattern containing spatial data is introduced to the CLA. A spatial

pattern contains more than one active column per time step – in this experiment, we chose

to activate two columns. Only one pattern was introduced for test and validation.

Furthermore, the likelihood of the pattern being introduced to the CLA was 1 out of 5 and

the signal was applied for 1 epoch of 1000 time steps. As illustrated in Figure 78a, the CLA

built very strong Hebbian connection correlating to the spatial pattern introduced to the

region. Again, using Gephi, the weak Hebbian connections were filtered out revealing only

the strong Hebbian connections perfectly correlating to the signal applied. In Figure 78b,

there is an obvious “interweaving” occurring between the strong Hebbian connections

creating a tower-like structure. The nodes at each “level” of the structure perfectly correlate

www.manaraa.com

130

to columns activated in the same time step – e.g. column 6 and 16 (represented by 1.6.0

and 1.16.0, respectively) appear next to each other because column 6 and 16 were activated

in the same time step. This experiment is predictable and repeatable, thus, validating the

performance of the CLA when more than one column is activated per time step.

Multiple patterns.

Figure 79. Multiple patterns results

In the multiple patterns experiment, a signal containing more than one pattern is

applied to the CLA. The synthetic signal contained 25 unique patterns of length 4. In other

words, there are 25 unique patterns that could be applied for four subsequent time steps.

Again, there was a 1 out of 5 chance that a pattern was randomly selected and applied to

the CLA, otherwise noise was introduced. Figure 79 displays the CLA structure after 1

epoch of training, 10,000 time steps. Furthermore, the CLA in this experiment contained

200 columns where only one column was active per time step. As seen in Figure 79, the

CLA contains many strong Hebbian connections. After using Gephi to filter out the weak

Hebbian connections and reorganizing the graph, 25 unique patterns emerge, and are

www.manaraa.com

131

illustrated in Figure 79b that perfectly correlate to the 25 signals applied to the CLA. This

experiment has proven to be predictable and repeatable and, thus, validates the CLA’s

ability to create Hebbian connections when multiple patterns are contained in the signal.

Noisy signal.

Figure 80. Noisy signal results

The noisy signal experiment, only with additional inter-pattern noise and intra-

pattern noise applied to the synthetic signal. In this experiment, additional inter-pattern

noise decreased the chances of 1 of the 25 available patterns being applied to the CLA.

Furthermore, when a signal was being applied to the CLA, intra-pattern noise was

introduced. In other words, there was 25% chance that when the signal was being applied,

random noise would be introduced to the CLA. The resulting structure of the CLA,

illustrated in Figure 80, contained many more connections than previous experiments as

the CLA attempted to extract useful data out of the very noisy signal. Again, using Gephi

to filter out weak Hebbian connections and reorganizing the graph, we were able to

properly identify the 25 unique patterns contained in the Hebbian connections (illustrated

www.manaraa.com

132

in Figure 80b). In Figure 80b one of the patterns is highlighted to illustrate that the CLA

was able to correctly identify 1 of the 25 patterns introduced to the CLA. These results

predictable and repeatable and, thus, validates the CLA’s ability to identify multiple

patterns contained in the signal even within a very noisy environment.

Name cells. Name cells, as described in Chapter 5 and [3], are used to group,

identify, and output patterns within a CLA. In this experiment, we show a number of name

cells generated when a single pattern is introduced. As shown in Figure 81, name cells are

generated across strong Hebbian connections. Name cells are generated automatically, and

only one name cell can represent an individual Hebbian connection between cells.

Furthermore, name cells are limited to fewer than 3 total connections, thus generalizing the

connections they represent. Although the pattern illustrated in Figure 81 only represents a

very simple signal these result were predictable and repeatable across all synthetic signals

tested and validate the CLA’s ability to build and maintain name cells for classification

and hierarchical communications.

Figure 81. Name cell creation results

www.manaraa.com

133

Classification

Hierarchy. Classification was achieved as described in Chapter 5. This experiment

tests the effects on performance by increasing the size of the hierarchy by 1) adding more

columns of cell regions; and 2) increasing the number of hierarchical layers.

Figure 82. Increasing the number of columns

Table 9

Learning rate per hierarchical layer

Hierarchical Layer Number Learning Rate

1 10

2 20

3 40

4 80

5 160

6 320

Figure 82 illustrates the difference between classification hierarchies of varying

number of columns. Each column in the hierarchy represents a modality input to the

www.manaraa.com

134

hierarchical structure of CLAs. In this experiment, hierarchical structure of CLAs ranging

from 1 column to 16 columns were tested for classification performance.

Figure 83. Increasing the number of hierarchical layers

Figure 83 illustrates the difference between hierarchical layers of varying size. In

this experiment, along with varying the number of modalities, we also varied the number

of layers in the hierarchy to test classification performance. As seen in Figure 83 and Table

9, the learning rate increases as we move up the hierarchy.

Figure 84 displays the synthetic test signal used in this experiment. The synthetic

signal contains 30 unique classes randomly activated one after another. The dataset

contains 10,000 time steps and each pattern is a length of 100 time steps. Finally, a random

bias between 0 and 2 was added to each signal.

www.manaraa.com

135

Figure 84. Hierarchical structuring dataset (subset)

For each modality, the data was normalized from 0 to 1 then binned. Each bin

represents a column of cells. For example, if we initialize a cell region with 25 columns,

there will be 25 bins for incoming data. When incoming data falls within one of the bins,

that bin sends a signal to its respective column of cells.

The final results of the hierarchical classification can be seen in Figure 85 as a 3D

mesh. Classification was accomplished using cross validation [24] – i.e., 90% of signal

used for training, 10% used for assessing classification performance. As displayed in

Figure 85, increasing the number of modalities increases the classification performance

with diminishing returns after approx. eight modalities. Furthermore, although not as

apparent, increasing the levels of hierarchy increases the performance of the hierarchy until

a 6th layer was added.

www.manaraa.com

136

Figure 85. Average performance of hierarchical structures

Sparsity. Sparsity, as described in Chapter 5, is the number of active columns vs.

inactive columns. This experiment illustrates the effects of sparsity on classification of a

hierarchy containing 10 columns and 3 layers totaling in 30 CLAs running synchronously.

Furthermore, the synthetic signal contains only 5 classes and no bias.

Figure 86. Varying levels of sparsity

www.manaraa.com

137

Table 10

Level of sparsity

Number of Bins Sparsity

25 4%

50 2%

100 1%

200 .5%

Different levels of sparsity are accomplished by changing the number of bins over

a single dataset. The number of bins corresponds to the number of columns in a CLA.

Because we are only activating one column per time step, we can vary the level of sparsity

for a given dataset by separating the data into different numbers of bins. Figure 86 shows

the same dataset, but broken in 25, 50, 100, etc. bins. The level of sparsity (because we are

only activating 1 bin per time step) of each region can be found in Table 10.

Figure 87. Sparsity vs performance

www.manaraa.com

138

As shown in Figure 87, as level of sparsity increases, the classification performance

decreases – i.e., there is an inverse relationship between level of sparsity and classification

performance.

Noise. This experiment identifies the effects of corrupting a signal with random

noise from a normal data distribution. In this experiment, during synthetic data generation

random noise was introduced using MATLAB’s built in randn() function. The magnitude

of the random noise from a normal data distribution was adjusted to a signal to noise ratios

(SNR) specified in. The synthetic dataset contained 5 classes with no bias.

For classification experiment, the hierarchy of CLAs was held constant with 1%

sparsity levels, 10 modalities, and 3 hierarchical layers totaling in 30 CLAs running

synchronously. The following table displays the results of classification while testing this

hierarchical CLA structure against variable SNRs introduced to the hierarchical structure.

No filtering was applied to the noisy signals.

Table 11

Hierarchical classification performance with noise

SNR (db) Classification Performance

INF 95%

12.0 94%

4.4 92%

1.9 79%

0.0 73%

-3.5 66%

-6.0 63%

-8.0 57%

-9.5 55%

-10.9 47%

-12.0 41%

-14.0 29%

www.manaraa.com

139

CLA flight state identification. This section outlines the results from real flight

data of a PIXHAWK controlled unmanned aerial system (UAS). The flight data

classification dataset contains approximately 12,670 time steps in which 12 automated

flights were executed. State information from the flight computer was recorded at 10Hz

resulting in 21 minutes of classified flight data. The hierarchical classifier training was

conducted in 3 epochs – i.e. the dataset was introduced 3 times to the classifier.

Furthermore, training and classification were conducted concurrently during each epoch.

The following figure, Figure 88, displays the results of the 10x cross validation of

the classification exercise using a confusion matrix. The hierarchy of CLAs was held

constant with 1% sparsity levels, 8 modalities, and 3 hierarchical layers totaling in 24 CLAs

running synchronously.

Figure 88. Confusion matrix of flight data classification using CLA

NuPIC flight state identification. The purpose of this section is to quantify the

classification performance of the flight state identification dataset using the open source

www.manaraa.com

140

hierarchical learning algorithm NuPIC, supported by Numenta. The performance of NuPIC

in this experiment is used for a direct comparison between the performances of the CLA

versus the performance of a similar, commercial-off-the-shelf hierarchical learning

algorithm. Default classification parameters for NuPIC used in this experiment based are

off of the Online Prediction Framework (OPF) examples in NuPIC version 0.5.7. The

NuPIC OPF provides the closest comparison to CLA developed for this thesis.

Figure 89. Confusion matrix of flight data classification using NuPIC

www.manaraa.com

141

Discussion

This thesis has presented the fundamental principles behind cortical learning

algorithms, which are based on the basic cortical interactions of the mammalian brain. The

CLA developed for this thesis primarily models the supergranular layers of the neocortex

(Layers II and III) where patterns are believed to be stored and recalled. By logically

stacking the cell regions into a hierarchy, low-level signals can be abstracted into higher-

level patterns that demonstrate both invariance (in respect to time) and noise rejection from

noisy signals. Furthermore, by using feedforward signals, a hierarchy of CLAs is able to

classify patterns in a supervised learning scheme.

As confirmed in Chapter Chapter 6, the CLA developed for this thesis performs as

described in Chapter Chapter 5 and demonstrates the pattern recognition properties

explained in Section 0. In Section 0, the described CLA demonstrates temporal and spatial

detection, storage, and prediction of patterns in an unsupervised learning scheme. The CLA

resists catastrophic forgetting by creating permanent Hebbian connections after 𝛾 , the

permanence threshold, has been reached. Data fusion of various modalities is combined

using two different yet complimentary methods; 1) combination of generalized column

activations mimicking action potentials via driver signals originating from the thalamus

and 2) combination of feedforward “bursting” signals with feedback class inputs during

supervised learning. The combination of these two methods semantically associate

different modalities with respect to time. The CLA is able to identify anomalies as bursting

columns – i.e. when the CLA does not predict an input, its model is violated which indicates

www.manaraa.com

142

an anomaly may have been identified. Finally, during hierarchical classification, new

classes can be added dynamically to the CLA models.

In Section 0, we used classification performance as a metric to assess the properties

of hierarchical structures of CLAs. As seen in Figure 85, for the 30 class dataset introduced

to the hierarchy of CLAs, the hierarchical structure’s performance is greatly influenced by

the number of columns of CLA’s included in the structure. Furthermore, increasing the

levels of hierarchy (i.e. stacked CLAs per column) increased the performance of the overall

hierarchical structure as well, although the effect of adding more levels in the hierarchy did

not have as strong of an effect as increasing the number of columns or modalities. In fact,

after 6 levels were introduced to the hierarchy, the structure started to perform poorly. We

believe that the degraded performance was caused by overlearning – i.e. because the

learning rate increases as we move up the hierarchy, the chances of overlearning increases.

Therefore, we conclude that the classification performance is highly dependent of the

learning rate of the CLAs.

The effects of CLA sparsity was measured via hierarchical classification

performance and recorded in Chapter 6. As shown in Figure 87, there is an inverse

relationship between classification performance and level of sparsity – i.e. as the ratio of

active columns to non-active columns increases, the performance of the classification task

decreases. In the testing conducted for this thesis, we observed up to 10% decrease in

classification performance when a ratio of 1:25 active vs inactive columns was tested.

Furthermore, we observed an obvious increase in the rate of speed at which algorithm runs

when the sparsity level increased – i.e. 1:25 active vs inactive columns runs faster than

1:100 active vs inactive columns. This finding, although not quantified in this thesis, makes

www.manaraa.com

143

sense - the computational complexity increases as we add more columns to the CLA, thus

increasing the time required for computing the CLA per time step. We theorize that,

depending on the application, there is an optimal computation speed vs classification

performance (illustrated in Figure 90) for real-time applications – i.e. an optimal sparsity

level at which the CLA should be initialized for real-time applications.

Figure 90. Example of speed vs performance

In Chapter 6, we assessed the hierarchy of CLAs performance when normally

distributed noise was introduced at varying signal to noise ratios (SNRs). As displayed in

Table 11, the hierarchy of CLAs, predictably, degraded noticeably as lower SNRs were

applied to the signals. The control dataset’s classification performance was 95%. The

probability of correct classification due to random guessing was .2 for all datasets testing

in the noisy signal experiment. As the SNR decreased, the hierarchy of CLAs approached

the probability of random guessing. At 0dB SNR (noise level = signal level) the

www.manaraa.com

144

performance dropped 20% off of the control dataset’s classification performance. At -6dB

SNR (noise level was twice that of the signal) the hierarchy of CLA’s classification

performance was observed at 63% - approximately 43% higher than random guessing.

Although this experiment suggests that hierarchies of CLAs demonstrate resistance to

noise, more testing should be conducted to confirm a similar results on both real and

synthetic datasets with and without filtering. Furthermore, it is yet to be seen if this

resistance to noise demonstrated by the hierarchy of CLAs will be beneficial in real-world

applications.

In Chapter 6, we attempted to classify real flight state from an unmanned aerial

system (UAS). As displayed in the confusion matrix (Figure 88), the system correctly

identified the state of the UAS with 91.4% accuracy overall of the 5 class time series

dataset. The dataset contained unbalanced examples of each of the 5 classes. The bias of

the unbalanced datasets were obvious from the results – i.e. the class with the most data

“Cruise” performed best at 98% correct classification whereas “Ground” and “Landing”

performed at 62% and 69% correct classification, respectively.

When the results of the real flight data using the CLA are compared to NuPIC for

flight state classification, we observe a small overall classification performance increase

using the CLA versus NuPIC – CLA performance is 91.4% whereas NuPIC performance

is 88.6%. Although the CLA performed better overall, NuPIC performed significantly

better than the CLA during the ground state (the ground state has the least number of

samples in the dataset). The CLA excelled in identifying the state of the system during

transitions while NuPIC was still identifying the transition. An example of where the CLA

identified a class transition from hover (class 3) to forward flight (class 4) faster than

www.manaraa.com

145

NuPIC is shown in Figure 91. Clean transitions from one class to another class increased

the overall 10x cross validation of the CLA over the NuPIC despite NuPIC’s superior

performance with unbalanced data.

Figure 91. Class transition of NuPIC and CLA

The functionality demonstrated by the CLA is accomplished using a single

fundamental algorithm, described in Section 0 and demonstrated in Chapter 6. The CLA –

which incorporates online learning, sparsity, hierarchy, and signal agnostics – provides

www.manaraa.com

146

anomaly detection, noise reduction, invariant representations, data fusion and resistance to

catastrophic forgetting in a single algorithm. There is still much more research to be

completed before CLA algorithms will be able to perform at levels comparable to the

CLA’s closest machine learning and pattern recognition relative, deep belief networks

(DBNs). With that said, cortical learning algorithms of the future provide promising results

as they share the benefits of DBNs, yet operate in an online learning fashion and are

designed to incorporate the feedback channels necessary for motor control in future robotic

applications.

The CLA belongs on highly parallelized computer architectures. The execution of

a discrete time step can be optimized to run in parallel which would greatly increase the

speed that the algorithm can run. Moreover, when running multiple CLAs in a hierarchical

structure, it is possible to distribute the CLAs onto multiple threads, multiple cores, or even

multiple machines. This thesis’s implementation of the CLA can run multiple CLAs in a

hierarchy on multiple threads allowing discrete time steps of the hierarchy to run more

efficiently on multithreaded processors. In retrospect, the CLA should be implemented for

highly parallel hardware architectures (such as GPUs). Furthermore, because most of the

nodes of the CLA are in an inactive state at any given time during the CLA’s operation, a

lot of energy is wasted maintaining the state of the CLA in memory and performing

calculations in a serial fashion on inactive members of the cell regions. Although each

CLA runs in a single thread, the hierarchy of CLAs prove to perform quickly when running

as a hierarchy of synchronized, multithreaded CLAs – suggesting that many (e.g. tens of

thousands) CLAs arranged in hyper-modal, deep hierarchies is feasible on computing

clusters and/or supercomputers.

www.manaraa.com

147

Figure 92. Example of arbitrarily large hierarchy of CLAs

The figure above, Figure 92, an n column by m row hierarchy of CLAs is illustrated

as an example of an arbitrarily large hierarchical structure. The columns represent n

modalities and rows represent m layers or “deepness” of the hierarchy (i.e. the deepness of

the hierarchy increases with quantity of layers). In this configuration, all CLAs are

synchronize to the current discrete time step. As previously mentioned, this thesis strongly

suggests that the example synchronized hierarchical structure is feasible on computing

clusters and/or supercomputers. It is worth noting that the architecture illustrated in Figure

92 is only one of many possible architectures of CLA hierarchies – i.e. the architecture for

motor control or feature extraction may be much different than the architecture used for

classification in this thesis.

The CLA developed for this thesis explores various properties of neurobiology

inspired cortical learning algorithms. Future work on cortical learning algorithms must

consider new neurobiology discoveries in the feedback paths of the brain, interactions

between the thalamus and neocortex, and neocortex and the hippocampus. Also, future

www.manaraa.com

148

work on cortical learning algorithms must focus on hippocampal and thalamic functionality

as new neurobiology discoveries on the brain regions are published. It is important to note

that neurobiological discoveries are accelerating to create a better understanding of the

brain every year, therefore researchers in this field must keep a close eye on emerging

findings in neurobiology to include into their cortical learning algorithms. Furthermore, as

neurobiology research evolves and the need for increasingly intelligent machines

continues, new hardware architectures will emerge to address the cortical learning

algorithms properties. An example of this push to build hardware that is applicable to

highly neurobiologically inspired algorithms is DARPA’s (Defense Advanced Research

Projects Agency) SyNAPSE (Systems of Neuromorphic Adaptive Plastic Scalable

Electronics) project [52]. The goal of the project is to create hardware that achieves power

savings for neural systems by utilizing sparse hardware resources while processing large

volumes of information, much like the mammalian neocortex. These new hardware

architectures can be utilized to produce extremely powerful and efficient cortical learning

algorithms in future research.

Finally, while researching neurobiological algorithms and DBNs, it became

apparent that much of the research was devoted to tackling problems such as image

recognition, high-level natural language processing, and other complex perceptual

applications. This focus on complex perceptual problems has yielded groundbreaking

results that continue to improve upon the state of the art of pattern recognition and machine

learning, yet one can argue that these techniques are not addressing the real goal of machine

learning and pattern recognition fields. One can argue that the goal of machine learning

and pattern recognition is to produce methods, algorithms, etc. to model and enable

www.manaraa.com

149

artificially intelligent agents capable of learning behaviors without prior knowledge and

little human intervention. Furthermore, it has been hypothesized that the nervous system

evolved specifically to address movement of an organism and three-dimensional

navigation [54]. If that hypothesis holds true, cortical learning algorithms of the future

should be designed to address feedforward sensory information in order for the agent to

provide feedback commands to motor centers for movement in three dimensional space –

i.e. pattern recognition and machine learning researchers should focus research on enabling

artificially intelligent agents capable of learning complex movements without prior

knowledge and little to no human intervention using cortical learning algorithms. I

hypothesize that by focusing on movement and three dimensional navigation, intelligent

behavior and complex perceptual understanding of the agent’s surrounding world will

emerge, just like with the evolution of the nervous system in biological systems. The

emergence of intelligent behavior and complex perceptual understanding from movement

and three dimensional navigation may lead to image recognition, high-level natural

language processing, and other complex perceptual applications.

The brain is one the most complex structures we have ever studied. It has continued

to perplex neurobiology researchers for centuries and is the only source of intelligence in

the known universe. Furthermore, the brain is our only obvious proof of concept for

intelligence. Biological evolution, over billions of years, has built a machine capable of

extraordinarily hard perception and control tasks. The nervous system of most species in

the animal kingdom is responsible for regulation and control of trillions of individual cells.

Beyond regulation and control, the nervous system (more specifically the brain) is capable

of forming complex memories, socializing, performing incredibly fine motor commands,

www.manaraa.com

150

etc. As machine learning and pattern recognition researchers, it is necessary to better

understand the neurobiology field as the field continues to grow due to rapidly improving

brain imaging technologies in pursuit of artificially intelligent agents.

Contributions and Future Work

This thesis has yielded an experimental cortical learning algorithm (CLA) based –

primarily - on Jeff Hawkins et al. ([5] [3]) theory of neocortical operation as well as

neurobiologist SM Sherman et al. ([11] [12]) thalamus research. Through synthetic dataset

validation and verification exercises on the developed CLA, this thesis has demonstrated:

1. A fast, simple cortical learning algorithm without the use of spatial and temporal

pooling, and without the use of name cells.

2. Effects of hierarchical structuring of CLAs on classification tasks.

3. Effects of CLA sparsity on classification tasks.

4. CLA classification via arbitrarily large n by m hierarchical structure of CLAs.

Furthermore, this thesis contributes the following to the field of pattern recognition

and artificial intelligence:

1. An open .NET C# CLA library for use future applications.

2. Novel approach to passing information up the CLA hierarchy derived from

neurobiology research [11].

3. Theory of how cortical learning algorithms may be applied to motor control

applications.

Finally, this thesis’s purpose is to supply the reader with all necessary information

needed to learn, adapt, and/or design their own algorithm for experimentation in this

emerging neurobiologically inspired field of cortical learning algorithms. We would like

to expand on this work in the future by focusing on the following items:

www.manaraa.com

151

1. Apply the current hierarchy of CLAs architecture to real-world time series

classification problems.

2. Implement basic motor control applications using the CLA via a reinforcement

learning.

3. Quantify the performance of the CLA on time series feature extraction datasets.

4. Compare the performance of the developed CLA classification algorithm against a

variety of classifiers.

5. Increased focus on thalamic and hippocampal interactions with the neocortex via

emerging neurobiology research.

6. Create theories and methods to automate CLA parameter tuning (e.g. generalized

convergence of CLA learning rate).

7. Automate and quantify hierarchical structuring architectures for a variety of

applications (e.g. classification, feature extraction, data mining, etc.).

8. Rebuild the CLA for parallel processors – i.e. computer clusters, GPUs, FPGAs,

neuromorphic chips, etc.

Conclusion

The current state of neurobiology research, due to advancements in in vivo brain

imaging and other in vivo techniques, has enabled a detailed view into the operation of the

brain. This has allowed researchers to utilize the many decades of brain structure research

and understand how the various structures interact. Understanding these complex

interactions throughout the various structures of the brain are, likely, key to understanding

intelligence. Moreover, a balance between research, theory and implementation of these

biologically inspired algorithms must be maintained to continue progression the field.

Although studying the brain and brain function may open doors to understanding the basis

www.manaraa.com

152

of biological intelligence, the brain is not an end-all general learning algorithm. Although

the CLA is founded on neurobiology research, the no-free-lunch theorems [2] holds true

for the CLA and, ultimately, any neurobiology inspired algorithms. Further research into

cortically inspired algorithms should focus on the useful tasks that most animals excel at -

perception and control. It is important to note that all intelligent behavior (such as planning,

reasoning, language and understanding) is, plausibly, emergent from perception and

control - therefore, perception and control should be the focus of cortically inspired future

research.

This research has concluded that, at a basic level, interactions between the

supragranular layers of the neocortex (Layers II and III) can store semantic meaning,

feedback, auto-correlate patterns, and produced signals to be used for classification.

Furthermore, the CLA algorithm can add new classes in real time, detect anomalies, and

natively achieve data fusion while resisting sensitivity to noise and reducing vulnerability

to catastrophic forgetting. Surprisingly, all the aforementioned properties and applications

of the CLA are achieved without modification to the basic cortical learning algorithm.

Finally, this research has quantified hierarchical interactions between CLAs when arranged

in logical hierarchies of CLAs while understanding best practices when constructing a CLA

hierarchy.

www.manaraa.com

153

References

[1] V. B. Mountcastle, An Organizing Principle for Cerebral Function, Cambridge,

MA: MIT Press, 1978.

[2] D. H. Wolpert and W. G. Macready, "No free lunch theorems for optimization.,"

Evolutionary Computation, IEEE Transactions, pp. 67-82, 1997.

[3] J. Hawkins and S. Blakeslee, On Intelligence, New York: Times Books, 2004.

[4] Numenta, Inc., "Hierarchical Temporal Memory including HTM Cortical

Learning Algorithms," 2011.

[5] D. George, "How The Brain Might Work: A Hierarchical And Temporal Model

For Learning And Recognition," Stanford University, Stanford, CA, 2008.

[6] Y. Bengio et al., "Greedy layer-wise training," Advances in Neural Information

Processing Systems, p. 19, 2007.

[7] Y. Bengio and Y. LeCun, "Scaling learning algorithms towards AI," Large-scale

kernel machines, pp. 1-41, 2007.

[8] E. A. M. Demis Hassabis, "Deconstructing episodic memory with construction,"

Trends in cognitive sciences, vol. 11, no. 7, pp. 299-306, 2007.

[9] Q. V. Le et al., "Building High-level Features Using Large Scale Unsupervised

Learning," in International Conference on Machine Learning, Edinburgh,

Scotland UK, 2012.

[10] Numenta, Inc., "Breakthrough Science of Anomally Detection: Grok," Numenta,

Inc., 8 Nov 2014. [Online]. Available: http://numenta.com/grok/. [Accessed 8

Nov 2014].

[11] S. M. Sherman, "Thalamocortical Interactions," Current Opinion in

Neurobiology, pp. 22:575-579, 2012.

[12] S. M. Sherman and R. W. Guillery, Exploring the Thalamus and its Role in

Cortical Function, Cambridge, MA: MIT Press, 2006.

[13] R. W. Williams and K. Herrup, "The control of neuron number," Annual Review

of Neuroscience, vol. 11, no. 1, pp. 423-453, 1988.

[14] BruceBlaus, Artist, Neuron. [Art]. Web.

[15] D. Cooper, "The significance of action potential bursting in the brain reward

circuit," Neurochemistry international, vol. 41, no. 5, pp. 333-340, 2002.

www.manaraa.com

154

[16] Looie496, Artist, Vertebrate-brain-regions.png [Public domain]. [Art].

Wikimedia Commons, 2014.

[17] M. Sur et al.: The Role of Patterned Activity in Development and Plasticity of

Neocortical Circuits, Cambridge, MA: MIT Press, 1999.

[18] W. H. Calvin, Cortical Columns, Modules, and Hebbian Cell Assemblies,

Cambridge, MA: MIT Press, 1995.

[19] Gray754. [Art]. Wikimedia Commons.

[20] Y. B. Saalmann and S. Kastner, "Cognitive and Perceptual Functions of the

Visual Thalamus," Neuron, no. 71, pp. 209-223, 2011.

[21] Y. B. Saalmann, "Intralaminar and medial thalamic influence on cortical

synchrony, information transmission and cognition," 2014.

[22] R. W. Guillery and S. M. Sherman, Branched thalamic afferents: what are the

messages that they relay to cortex?, Chicago: Brain Research, 2011.

[23] R. Polikar, "Machine Learning and Pattern Recognition Lectures," 2013.

[24] H. &. S. Duda, "Pattern Classification, 2/e Wiley," 2000.

[25] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,

Cambridge, MA: MIT Press, 1998.

[26] G. E. Hinton and Y.-W. Teh, "A fast learning algorithm for deep belief nets,"

Neural Computation, 2006.

[27] M. Minsky and S. Papert, Perceptrons, Cambridge, MA: MIT Press, 1969.

[28] D. E. Rumelhart et al., "Learning Internal Representations by Error Propagation,"

Parallel distributed processing: Explorations in the microstructure of cognition,

vol. 1, no. 1986, 1986.

[29] D. Michie et al, Machine Learning, Neural and Statistical Classification, 1994.

[30] G. Tesauro, "Practical issues in temporal difference learning," Machine Learning,

pp. 257-277, 1992.

[31] G. E. Hinton, "Learning multiple layers of representation," TRENDS in Cognitive

Sciences, vol. 11, no. 10, pp. 428-434, 2007.

[32] Brainmind, "brainmind.com," brainmind.com, 2010. [Online]. Available:

http://brainmind.com/TemporalLobes.html. [Accessed 25 February 2015].

www.manaraa.com

155

[33] D. Wang, "Temporal Pattern Processing," The Handbook of Brain Theory and

Neural Networks, vol. 2, pp. 1163-1167, 2003.

[34] N. Kasabov et al., "Dynamic evolving spiking neural networks for on-line spatio-

and spectro-temporal pattern recognition," Neural Networks, vol. 41, pp. 188-

201, 2013.

[35] L. Baldassarre et al., "Structured Sparsity Models for Brain Decoding from fMRI

data," in 2012 International Workshop on Pattern Recognition in NeuroImaging

(PRNI), London, 2012.

[36] J. Wright et al., "Sparse Representation For Computer Vision and Pattern

Recognition," Proceedings of the IEEE, vol. 98, no. 6, pp. 1031-1044, 2010.

[37] A. A. Salah et al., "A selective attention-based method for visual pattern

recognition with application to handwritten digit recognition and face

recognition," IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 24, no. 3, pp. 420-425, 2002.

[38] J. R. Newton and M. Sur, "Rewiring Cortex: Functional Plasticity Of The

Auditory Cortex During Development," Plasticity and Signal Representation in

the Auditory System, pp. 127-137, 2005.

[39] J. Newton et al., "Developmental Studies on Rewiring the Brain: What They Tell

Us about Brain Evolution," Evolution of Nervous Systems, vol. 3, pp. 103-112,

2007.

[40] B. Parsons et al., "Motor-sensory recalibration modulates perceived simultaneity

of cross-modal events," Frontiers in Psychology, pp. 4-46, 2013.

[41] G. A. Carpenter and S. Grossberg, "The ART of Adaptive Pattern Recognition,"

Computer, vol. 21, pp. 77-88, 1988.

[42] F. Castanedo, "A Review of Data Fusion Techniques," The Scientific World

Journal, vol. 2013, p. 19, 2013.

[43] Y. Hu and P. Loizou, "A comparative intelligibility study of single-microphone

noise redution Algorithms," The Journal of the Acoustical Society of America,

pp. 1777-1786, 2007.

[44] A. Patcha and J.-M. Park, "An overview of anomaly detection techniques:

Existing solutions and latest technological trends," Computer Networks, vol. 51,

no. 12, pp. 3448-3470, 2007.

[45] T. R. Hoens and N. V. Chawla, "Learning in Non-stationary Environments with

Class Imbalance," in Knowledge Discovery and Data Mining, Beijing, 2012.

www.manaraa.com

156

[46] G. Ditzler et al., "Learning in Nonstationary Environments: A Survey," IEEE

Computational Intelligence Magazine, vol. 10, no. 4, pp. 12-25, 2015.

[47] H. Alitto and W. M. Usery, "Corticothalamic feedback and sensory processing,"

Current Opinion in Neurobiology, no. 13, pp. 440-445, 2003.

[48] Gephi 0.8.2, "Open-source network analysis and visualization software package,"

2014.

[49] Association for Computing Machinery, "Data Mining Curriculum," Association

for Computing Machinery's Special Interest Group.

[50] H. Lee et al., "Convolutional Deep Belief Networks for Scalable Unsupervised

Learning of Hierarchical Representations," in Proceedings of the 26th

International Conference on Machine Learning, Montreal, Canada, 2009.

[51] H. B. Project, "Brain Simulation Platform - Human Brain Project," Human Brain

Project, European Commission, 2013. [Online]. Available:

https://www.humanbrainproject.eu/brain-simulation-platform1. [Accessed

2015].

[52] DARPA, "SYSTEMS OF NEUROMORPHIC ADAPTIVE PLASTIC

SCALABLE ELECTRONICS (SYNAPSE)," DARPA, 2014. [Online].

Available:

http://www.darpa.mil/Our_Work/DSO/Programs/Systems_of_Neuromorphic_A

daptive_Plastic_Scalable_Electronics_%28SYNAPSE%29.aspx.

[53] F. Matyas et al., "Motor Control by Sensory Cortex," Science, vol. 330, no. 26

November 2010, pp. 1240-1243, 2010.

[54] D. M. Wolpert et al., "An Internal Model for Sensorimotor Integration," Science,

vol. 269, no. 29 September 1995, pp. 1880-1882, 1995.

[55] M. Mohri, R. Afshin and T. Ameet, Foundations of Machine Learning,

Cambridge, MA: MIT, 2012.

[56] T. M. Cover, "Geometrical and Statistical properties of systems of linear

inequalities with applications in pattern recognition.," Cover, T.M..

	An investigation of the cortical learning algorithm
	Recommended Citation

	Cortical Learning Algorithm

